Cargando…
A Review of Approaches for Predicting Drug–Drug Interactions Based on Machine Learning
Drug–drug interactions play a vital role in drug research. However, they may also cause adverse reactions in patients, with serious consequences. Manual detection of drug–drug interactions is time-consuming and expensive, so it is urgent to use computer methods to solve the problem. There are two wa...
Autores principales: | Han, Ke, Cao, Peigang, Wang, Yu, Xie, Fang, Ma, Jiaqi, Yu, Mengyao, Wang, Jianchun, Xu, Yaoqun, Zhang, Yu, Wan, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835726/ https://www.ncbi.nlm.nih.gov/pubmed/35153767 http://dx.doi.org/10.3389/fphar.2021.814858 |
Ejemplares similares
-
Machine Learning in Antibacterial Drug Design
por: Jukič, Marko, et al.
Publicado: (2022) -
Integrated Random Negative Sampling and Uncertainty Sampling in Active Learning Improve Clinical Drug Safety Drug–Drug Interaction Information Retrieval
por: Xie, Weixin, et al.
Publicado: (2021) -
Limits of Prediction for Machine Learning in Drug Discovery
por: von Korff, Modest, et al.
Publicado: (2022) -
Application of Physiologically Based Pharmacokinetic Modeling to Evaluate the Drug–Drug and Drug–Disease Interactions of Apatinib
por: Liu, Hongrui, et al.
Publicado: (2021) -
Detection of potential drug-drug interactions for risk of acute kidney injury: a population-based case-control study using interpretable machine-learning models
por: Akimoto, Hayato, et al.
Publicado: (2023)