Cargando…

Optical Study of Solvatochromic Isocyanoaminoanthracene Dyes and 1,5-Diaminoanthracene

Isocyanoaminoarenes (ICAAr-s) are a novel and versatile group of solvatochromic fluorophores. Despite their versatile applicability, such as antifungals, cancer drugs and analytical probes, they still represent a mostly unchartered territory among intramolecular charge-transfer (ICT) dyes. The curre...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagy, Miklós, Fiser, Béla, Szőri, Milán, Vanyorek, László, Viskolcz, Béla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835764/
https://www.ncbi.nlm.nih.gov/pubmed/35163239
http://dx.doi.org/10.3390/ijms23031315
Descripción
Sumario:Isocyanoaminoarenes (ICAAr-s) are a novel and versatile group of solvatochromic fluorophores. Despite their versatile applicability, such as antifungals, cancer drugs and analytical probes, they still represent a mostly unchartered territory among intramolecular charge-transfer (ICT) dyes. The current paper describes the preparation and detailed optical study of novel 1-isocyano-5-aminoanthrace (ICAA) and its N-methylated derivatives along with the starting 1,5-diaminoanthracene. The conversion of one of the amino groups of the diamine into an isocyano group significantly increased the polar character of the dyes, which resulted in a significant 50–70 nm (2077–2609 cm(−1)) redshift of the emission maximum and a broadened solvatochromic range. The fluorescence quantum yield of ICAAs is strongly influenced by the polarity of the solvent. The starting anthracene-diamine is highly fluorescent in every solvent (√(f) = 12–53%), while the isocyano derivatives are practically nonfluorescent in solvents more polar than dioxane. This phenomenon implies the potential application of ICAAs to probe the polarity of the medium and is favorable in practical applications, such as cell-staining, resulting in a reduced background fluorescence. The ICT character of the emission states of ICAAs are in good agreement with the computational findings presented in TD-DFT calculations and molecular electrostatic potential (MESP) isosurfaces.