Cargando…
Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins
In order to unravel the functions of ASR (Abscisic acid, Stress, Ripening-induced) proteins in the nucleus, we created a new model of genetically transformed grape embryogenic cells by RNAi-knockdown of grape ASR (VvMSA). Nuclear proteomes of wild-type and VvMSA-RNAi grape cell lines were analyzed b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835812/ https://www.ncbi.nlm.nih.gov/pubmed/35163458 http://dx.doi.org/10.3390/ijms23031537 |
_version_ | 1784649524432601088 |
---|---|
author | Atanassov, Hristo Parrilla, Jonathan Artault, Caroline Verbeke, Jérémy Schneider, Thomas Grossmann, Jonas Roschitzki, Bernd Atanassova, Rossitza |
author_facet | Atanassov, Hristo Parrilla, Jonathan Artault, Caroline Verbeke, Jérémy Schneider, Thomas Grossmann, Jonas Roschitzki, Bernd Atanassova, Rossitza |
author_sort | Atanassov, Hristo |
collection | PubMed |
description | In order to unravel the functions of ASR (Abscisic acid, Stress, Ripening-induced) proteins in the nucleus, we created a new model of genetically transformed grape embryogenic cells by RNAi-knockdown of grape ASR (VvMSA). Nuclear proteomes of wild-type and VvMSA-RNAi grape cell lines were analyzed by quantitative isobaric tagging (iTRAQ 8-plex). The most significantly up- or down-regulated nuclear proteins were involved in epigenetic regulation, DNA replication/repair, transcription, mRNA splicing/stability/editing, rRNA processing/biogenesis, metabolism, cell division/differentiation and stress responses. The spectacular up-regulation in VvMSA-silenced cells was that of the stress response protein VvLEA D-29 (Late Embryogenesis Abundant). Both VvMSA and VvLEA D-29 genes displayed strong and contrasted responsiveness to auxin depletion, repression of VvMSA and induction of VvLEA D-29. In silico analysis of VvMSA and VvLEA D-29 proteins highlighted their intrinsically disordered nature and possible compensatory relationship. Semi-quantitative evaluation by medium-throughput immunoblotting of eighteen post-translational modifications of histones H3 and H4 in VvMSA-knockdown cells showed significant enrichment/depletion of the histone marks H3K4me1, H3K4me3, H3K9me1, H3K9me2, H3K36me2, H3K36me3 and H4K16ac. We demonstrate that grape ASR repression differentially affects members of complex nucleoprotein structures and may not only act as molecular chaperone/transcription factor, but also participates in plant responses to developmental and environmental cues through epigenetic mechanisms. |
format | Online Article Text |
id | pubmed-8835812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88358122022-02-12 Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins Atanassov, Hristo Parrilla, Jonathan Artault, Caroline Verbeke, Jérémy Schneider, Thomas Grossmann, Jonas Roschitzki, Bernd Atanassova, Rossitza Int J Mol Sci Article In order to unravel the functions of ASR (Abscisic acid, Stress, Ripening-induced) proteins in the nucleus, we created a new model of genetically transformed grape embryogenic cells by RNAi-knockdown of grape ASR (VvMSA). Nuclear proteomes of wild-type and VvMSA-RNAi grape cell lines were analyzed by quantitative isobaric tagging (iTRAQ 8-plex). The most significantly up- or down-regulated nuclear proteins were involved in epigenetic regulation, DNA replication/repair, transcription, mRNA splicing/stability/editing, rRNA processing/biogenesis, metabolism, cell division/differentiation and stress responses. The spectacular up-regulation in VvMSA-silenced cells was that of the stress response protein VvLEA D-29 (Late Embryogenesis Abundant). Both VvMSA and VvLEA D-29 genes displayed strong and contrasted responsiveness to auxin depletion, repression of VvMSA and induction of VvLEA D-29. In silico analysis of VvMSA and VvLEA D-29 proteins highlighted their intrinsically disordered nature and possible compensatory relationship. Semi-quantitative evaluation by medium-throughput immunoblotting of eighteen post-translational modifications of histones H3 and H4 in VvMSA-knockdown cells showed significant enrichment/depletion of the histone marks H3K4me1, H3K4me3, H3K9me1, H3K9me2, H3K36me2, H3K36me3 and H4K16ac. We demonstrate that grape ASR repression differentially affects members of complex nucleoprotein structures and may not only act as molecular chaperone/transcription factor, but also participates in plant responses to developmental and environmental cues through epigenetic mechanisms. MDPI 2022-01-28 /pmc/articles/PMC8835812/ /pubmed/35163458 http://dx.doi.org/10.3390/ijms23031537 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Atanassov, Hristo Parrilla, Jonathan Artault, Caroline Verbeke, Jérémy Schneider, Thomas Grossmann, Jonas Roschitzki, Bernd Atanassova, Rossitza Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins |
title | Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins |
title_full | Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins |
title_fullStr | Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins |
title_full_unstemmed | Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins |
title_short | Grape ASR-Silencing Sways Nuclear Proteome, Histone Marks and Interplay of Intrinsically Disordered Proteins |
title_sort | grape asr-silencing sways nuclear proteome, histone marks and interplay of intrinsically disordered proteins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835812/ https://www.ncbi.nlm.nih.gov/pubmed/35163458 http://dx.doi.org/10.3390/ijms23031537 |
work_keys_str_mv | AT atanassovhristo grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins AT parrillajonathan grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins AT artaultcaroline grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins AT verbekejeremy grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins AT schneiderthomas grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins AT grossmannjonas grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins AT roschitzkibernd grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins AT atanassovarossitza grapeasrsilencingswaysnuclearproteomehistonemarksandinterplayofintrinsicallydisorderedproteins |