Cargando…

The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin

Two isoforms of human cardiac myosin, alpha and beta, share significant sequence similarities but show different kinetics. The alpha isoform is a faster motor; it spends less time being strongly bound to actin during the actomyosin cycle. With alpha isoform, actomyosin dissociates faster upon ATP bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gargey, Akhil, Nesmelov, Yuri E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835826/
https://www.ncbi.nlm.nih.gov/pubmed/35163146
http://dx.doi.org/10.3390/ijms23031220
_version_ 1784649527937990656
author Gargey, Akhil
Nesmelov, Yuri E.
author_facet Gargey, Akhil
Nesmelov, Yuri E.
author_sort Gargey, Akhil
collection PubMed
description Two isoforms of human cardiac myosin, alpha and beta, share significant sequence similarities but show different kinetics. The alpha isoform is a faster motor; it spends less time being strongly bound to actin during the actomyosin cycle. With alpha isoform, actomyosin dissociates faster upon ATP binding, and the affinity of ADP to actomyosin is weaker. One can suggest that the isoform-specific actomyosin kinetics is regulated at the nucleotide binding site of human cardiac myosin. Myosin is a P-loop ATPase; the nucleotide-binding site consists of P-loop and loops switch 1 and 2. All three loops position MgATP for successful hydrolysis. Loops sequence is conserved in both myosin isoforms, and we hypothesize that the isoform-specific structural element near the active site regulates the rate of nucleotide binding and release. Previously we ran molecular dynamics simulations and found that loop S291-E317 near loop switch 1 is more compact and exhibits larger fluctuations of the position of amino acid residues in beta isoform than in alpha. In alpha isoform, the loop forms a salt bridge with loop switch 1, the bridge is not present in beta isoform. Two isoleucines I303 and I313 of loop S291-E317 are replaced with valines in alpha isoform. We introduced a double mutation I303V:I313V in beta isoform background and studied how the mutation affects the rate of ATP binding and ADP dissociation from actomyosin. We found that ATP-induced actomyosin dissociation occurs faster in the mutant, but the rate of ADP release remains the same as in the wild-type beta isoform. Due to the proximity of loop S291-E317 and loop switch 1, a faster rate of ATP-induced actomyosin dissociation indicates that loop S291-E317 affects structural dynamics of loop switch 1, and that loop switch 1 controls ATP binding to the active site. A similar rate of ADP dissociation from actomyosin in the mutant and wild-type myosin constructs indicates that loop switch 1 does not control ADP release from actomyosin.
format Online
Article
Text
id pubmed-8835826
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88358262022-02-12 The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin Gargey, Akhil Nesmelov, Yuri E. Int J Mol Sci Article Two isoforms of human cardiac myosin, alpha and beta, share significant sequence similarities but show different kinetics. The alpha isoform is a faster motor; it spends less time being strongly bound to actin during the actomyosin cycle. With alpha isoform, actomyosin dissociates faster upon ATP binding, and the affinity of ADP to actomyosin is weaker. One can suggest that the isoform-specific actomyosin kinetics is regulated at the nucleotide binding site of human cardiac myosin. Myosin is a P-loop ATPase; the nucleotide-binding site consists of P-loop and loops switch 1 and 2. All three loops position MgATP for successful hydrolysis. Loops sequence is conserved in both myosin isoforms, and we hypothesize that the isoform-specific structural element near the active site regulates the rate of nucleotide binding and release. Previously we ran molecular dynamics simulations and found that loop S291-E317 near loop switch 1 is more compact and exhibits larger fluctuations of the position of amino acid residues in beta isoform than in alpha. In alpha isoform, the loop forms a salt bridge with loop switch 1, the bridge is not present in beta isoform. Two isoleucines I303 and I313 of loop S291-E317 are replaced with valines in alpha isoform. We introduced a double mutation I303V:I313V in beta isoform background and studied how the mutation affects the rate of ATP binding and ADP dissociation from actomyosin. We found that ATP-induced actomyosin dissociation occurs faster in the mutant, but the rate of ADP release remains the same as in the wild-type beta isoform. Due to the proximity of loop S291-E317 and loop switch 1, a faster rate of ATP-induced actomyosin dissociation indicates that loop S291-E317 affects structural dynamics of loop switch 1, and that loop switch 1 controls ATP binding to the active site. A similar rate of ADP dissociation from actomyosin in the mutant and wild-type myosin constructs indicates that loop switch 1 does not control ADP release from actomyosin. MDPI 2022-01-22 /pmc/articles/PMC8835826/ /pubmed/35163146 http://dx.doi.org/10.3390/ijms23031220 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gargey, Akhil
Nesmelov, Yuri E.
The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin
title The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin
title_full The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin
title_fullStr The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin
title_full_unstemmed The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin
title_short The Local Environment of Loop Switch 1 Modulates the Rate of ATP-Induced Dissociation of Human Cardiac Actomyosin
title_sort local environment of loop switch 1 modulates the rate of atp-induced dissociation of human cardiac actomyosin
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835826/
https://www.ncbi.nlm.nih.gov/pubmed/35163146
http://dx.doi.org/10.3390/ijms23031220
work_keys_str_mv AT gargeyakhil thelocalenvironmentofloopswitch1modulatestherateofatpinduceddissociationofhumancardiacactomyosin
AT nesmelovyurie thelocalenvironmentofloopswitch1modulatestherateofatpinduceddissociationofhumancardiacactomyosin
AT gargeyakhil localenvironmentofloopswitch1modulatestherateofatpinduceddissociationofhumancardiacactomyosin
AT nesmelovyurie localenvironmentofloopswitch1modulatestherateofatpinduceddissociationofhumancardiacactomyosin