Cargando…

Simultaneous Improvement of Grain Yield and Quality through Manipulating Two Type C G Protein Gamma Subunits in Rice

Heterotrimeric G protein signaling is an evolutionarily conserved mechanism in diverse organisms that mediates intracellular responses to external stimuli. In rice, the G proteins are involved in the regulation of multiple important agronomic traits. In this paper, we present our finding that two ty...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Lian, Wang, Xiaodong, Yu, Zhiwen, Cui, Xin, Xu, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835848/
https://www.ncbi.nlm.nih.gov/pubmed/35163383
http://dx.doi.org/10.3390/ijms23031463
Descripción
Sumario:Heterotrimeric G protein signaling is an evolutionarily conserved mechanism in diverse organisms that mediates intracellular responses to external stimuli. In rice, the G proteins are involved in the regulation of multiple important agronomic traits. In this paper, we present our finding that two type C G protein gamma subunits, DEP1 and GS3, antagonistically regulated grain yield and grain quality. The DEP1 gene editing we conducted, significantly increased the grain number per panicle but had a negative impact on taste value, texture properties, and chalkiness-related traits. The GS3 gene editing decreased grain number per panicle but significantly increased grain length. In addition, the GS3 gene-edited plants showed improved taste value, appearance, texture properties, and Rapid Visco Analyser (RVA) profiles. To combine the advantages of both gs3 and dep1, we conducted a molecular design breeding at the GS3 locus of a “super rice” variety, SN265, which has a truncated dep1 allele with erect panicle architecture, high-yield performance, and which is of mediocre eating quality. The elongated grain size of the sn265/gs3 gene-edited plants further increased the grain yield. More importantly, the texture properties and RVA profiles were significantly improved, and the taste quality was enhanced. Beyond showcasing the combined function of dep1 and gs3, this paper presents a strategy for the simultaneous improvement of rice grain yield and quality through manipulating two type C G protein gamma subunits in rice.