Cargando…

Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.)

Soil salinity is one of the most significant abiotic stresses affecting crop yield around the world. To explore the molecular mechanism of salt tolerance in rapeseed (Brassica napus L.), the transcriptome analysis and metabolomics analysis were used to dissect the differentially expressed genes and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Heping, Qian, Jiali, Zhang, Hao, Lu, Hongchen, Li, Ouqi, Li, Rihui, Yu, Yi, Wen, Jing, Zhao, Lun, Yi, Bin, Fu, Tingdong, Shen, Jinxiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836002/
https://www.ncbi.nlm.nih.gov/pubmed/35163202
http://dx.doi.org/10.3390/ijms23031279
_version_ 1784649570198749184
author Wan, Heping
Qian, Jiali
Zhang, Hao
Lu, Hongchen
Li, Ouqi
Li, Rihui
Yu, Yi
Wen, Jing
Zhao, Lun
Yi, Bin
Fu, Tingdong
Shen, Jinxiong
author_facet Wan, Heping
Qian, Jiali
Zhang, Hao
Lu, Hongchen
Li, Ouqi
Li, Rihui
Yu, Yi
Wen, Jing
Zhao, Lun
Yi, Bin
Fu, Tingdong
Shen, Jinxiong
author_sort Wan, Heping
collection PubMed
description Soil salinity is one of the most significant abiotic stresses affecting crop yield around the world. To explore the molecular mechanism of salt tolerance in rapeseed (Brassica napus L.), the transcriptome analysis and metabolomics analysis were used to dissect the differentially expressed genes and metabolites in two rapeseed varieties with significant differences in salt tolerance; one is an elite rapeseed cultivar, Huayouza 62. A total of 103 key differentially expressed metabolites (DEMs) and 53 key differentials expressed genes (DEGs) that might be related to salt stress were identified through metabolomics and transcriptomics analysis. GO and KEGG analysis revealed that the DEGs were mainly involved in ion transport, reactive oxygen scavenging, osmotic regulation substance synthesis, and macromolecular protein synthesis. The DEMs were involved in TCA cycle, proline metabolism, inositol metabolism, carbohydrate metabolic processes, and oxidation-reduction processes. In addition, overexpression of BnLTP3, which was one of the key DEGs, could increase tolerance to salt stress in Arabidopsis plants. This study reveals that the regulation mechanism of salt tolerance in rapeseed at the transcriptome and metabolism level and provides abundant data for further in-depth identification of essential salt tolerance genes.
format Online
Article
Text
id pubmed-8836002
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88360022022-02-12 Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.) Wan, Heping Qian, Jiali Zhang, Hao Lu, Hongchen Li, Ouqi Li, Rihui Yu, Yi Wen, Jing Zhao, Lun Yi, Bin Fu, Tingdong Shen, Jinxiong Int J Mol Sci Article Soil salinity is one of the most significant abiotic stresses affecting crop yield around the world. To explore the molecular mechanism of salt tolerance in rapeseed (Brassica napus L.), the transcriptome analysis and metabolomics analysis were used to dissect the differentially expressed genes and metabolites in two rapeseed varieties with significant differences in salt tolerance; one is an elite rapeseed cultivar, Huayouza 62. A total of 103 key differentially expressed metabolites (DEMs) and 53 key differentials expressed genes (DEGs) that might be related to salt stress were identified through metabolomics and transcriptomics analysis. GO and KEGG analysis revealed that the DEGs were mainly involved in ion transport, reactive oxygen scavenging, osmotic regulation substance synthesis, and macromolecular protein synthesis. The DEMs were involved in TCA cycle, proline metabolism, inositol metabolism, carbohydrate metabolic processes, and oxidation-reduction processes. In addition, overexpression of BnLTP3, which was one of the key DEGs, could increase tolerance to salt stress in Arabidopsis plants. This study reveals that the regulation mechanism of salt tolerance in rapeseed at the transcriptome and metabolism level and provides abundant data for further in-depth identification of essential salt tolerance genes. MDPI 2022-01-24 /pmc/articles/PMC8836002/ /pubmed/35163202 http://dx.doi.org/10.3390/ijms23031279 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wan, Heping
Qian, Jiali
Zhang, Hao
Lu, Hongchen
Li, Ouqi
Li, Rihui
Yu, Yi
Wen, Jing
Zhao, Lun
Yi, Bin
Fu, Tingdong
Shen, Jinxiong
Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.)
title Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.)
title_full Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.)
title_fullStr Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.)
title_full_unstemmed Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.)
title_short Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (Brassica napus L.)
title_sort combined transcriptomics and metabolomics analysis reveals the molecular mechanism of salt tolerance of huayouza 62, an elite cultivar in rapeseed (brassica napus l.)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836002/
https://www.ncbi.nlm.nih.gov/pubmed/35163202
http://dx.doi.org/10.3390/ijms23031279
work_keys_str_mv AT wanheping combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT qianjiali combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT zhanghao combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT luhongchen combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT liouqi combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT lirihui combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT yuyi combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT wenjing combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT zhaolun combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT yibin combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT futingdong combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl
AT shenjinxiong combinedtranscriptomicsandmetabolomicsanalysisrevealsthemolecularmechanismofsalttoleranceofhuayouza62anelitecultivarinrapeseedbrassicanapusl