Cargando…

Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars

Rice crops are often subject to multiple abiotic stresses simultaneously in both natural and cultivated environments, resulting in yield reductions beyond those expected from single stress. We report physiological changes after a 4 day exposure to combined drought, salt and extreme temperature treat...

Descripción completa

Detalles Bibliográficos
Autores principales: Habibpourmehraban, Fatemeh, Wu, Yunqi, Wu, Jemma X., Hamzelou, Sara, Masoomi-Aladizgeh, Farhad, Kamath, Karthik Shantharam, Amirkhani, Ardeshir, Atwell, Brian J., Haynes, Paul A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836074/
https://www.ncbi.nlm.nih.gov/pubmed/35163659
http://dx.doi.org/10.3390/ijms23031739
Descripción
Sumario:Rice crops are often subject to multiple abiotic stresses simultaneously in both natural and cultivated environments, resulting in yield reductions beyond those expected from single stress. We report physiological changes after a 4 day exposure to combined drought, salt and extreme temperature treatments, following a 2 day salinity pre-treatment in two rice genotypes—Nipponbare (a paddy rice) and IAC1131 (an upland landrace). Stomata closed after two days of combined stresses, causing intercellular CO2 concentrations and assimilation rates to diminish rapidly. Abscisic acid (ABA) levels increased at least five-fold but did not differ significantly between the genotypes. Tandem Mass Tag isotopic labelling quantitative proteomics revealed 6215 reproducibly identified proteins in mature leaves across the two genotypes and three time points (0, 2 and 4 days of stress). Of these, 987 were differentially expressed due to stress (cf. control plants), including 41 proteins that changed significantly in abundance in all stressed plants. Heat shock proteins, late embryogenesis abundant proteins and photosynthesis-related proteins were consistently responsive to stress in both Nipponbare and IAC1131. Remarkably, even after 2 days of stress there were almost six times fewer proteins differentially expressed in IAC1131 than Nipponbare. This contrast in the translational response to multiple stresses is consistent with the known tolerance of IAC1131 to dryland conditions.