Cargando…

The Effect of RADA16-I and CDNF on Neurogenesis and Neuroprotection in Brain Ischemia-Reperfusion Injury

Scaffold materials, neurotrophic factors, and seed cells are three elements of neural tissue engineering. As well-known self-assembling peptide-based hydrogels, RADA16-I and modified peptides are attractive matrices for neural tissue engineering. In addition to its neuroprotective effects, cerebral...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xingyu, Ren, Haiyuan, Peng, Ai, Cheng, Haoyang, Chen, Jiahao, Xia, Xue, Liu, Ting, Wang, Xiaojing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836142/
https://www.ncbi.nlm.nih.gov/pubmed/35163360
http://dx.doi.org/10.3390/ijms23031436
Descripción
Sumario:Scaffold materials, neurotrophic factors, and seed cells are three elements of neural tissue engineering. As well-known self-assembling peptide-based hydrogels, RADA16-I and modified peptides are attractive matrices for neural tissue engineering. In addition to its neuroprotective effects, cerebral dopamine neurotrophic factor (CDNF) has been reported to promote the proliferation, migration, and differentiation of neural stem cells (NSCs). However, the role of RADA16-I combined with CDNF on NSCs remains unknown. First, the effect of RADA16-I hydrogel and CDNF on the proliferation and differentiation of cultured NSCs was investigated. Next, RADA16-I hydrogel and CDNF were microinjected into the lateral ventricle (LV) of middle cerebral artery occlusion (MCAO) rats to activate endogenous NSCs. CDNF promoted the proliferation of NSCs, while RADA16-I induced the neural differentiation of NSCs in vitro. Importantly, both RADA16-I and CDNF promoted the proliferation, migration, and differentiation of endogenous NSCs by activating the ERK1/2 and STAT3 pathways, and CDNF exerted an obvious neuroprotective effect on brain ischemia-reperfusion injury. These findings provide new information regarding the application of the scaffold material RADA16-I hydrogel and the neurotrophic factor CDNF in neural tissue engineering and suggest that RADA16-I hydrogel and CDNF microinjection may represent a novel therapeutic strategy for the treatment of stroke.