Cargando…

FMI-based co-simulation method and test verification for tractor power-shift transmission

The tractor power-shift transmission (PST) research and development is a design process that incorporates many disciplines such as mechanical, control, and electronics. Modeling and simulation are typically dependent on various commercial tools for each discipline, making simulation, integration, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yiwei, Mao, Yawei, Xu, Liyou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836372/
https://www.ncbi.nlm.nih.gov/pubmed/35148348
http://dx.doi.org/10.1371/journal.pone.0263838
Descripción
Sumario:The tractor power-shift transmission (PST) research and development is a design process that incorporates many disciplines such as mechanical, control, and electronics. Modeling and simulation are typically dependent on various commercial tools for each discipline, making simulation, integration, and verification of system-level models problematic. Aiming at this, we propose a PST multi-domain co-simulation method based on the functional mock-up interface (FMI) standard, analyze the FMI-based simulation mechanism and the PST simulation system logical structure, and established the PST mechanical system model, control system model, tractor engine model, and tractor dynamic model. Based on FMI, these models are integrated into a PST co-simulation model. The starting speed, final drive half shaft speed and torque were simulated and tested. Among them, the simulation and the test starting time are 2.7s and 2.8s respectively, and the two speed curves are consistent; the simulation and the test final drive half shaft torque are approximately equal with a value of 1.5kN·m; the average Theil’s inequality coefficients (TIC) value of the simulation and the test final drive half shaft speed is 0.1375, which is less than 0.25. The results show that the simulation and the test results are consistent, the PST co-simulation model is accurate, and the co-simulation method is feasible, which can improve the efficiency of tractor PST system development.