Cargando…
Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening
Artificial Intelligence has showcased clear capabilities to automatically grade diabetic retinopathy (DR) on mydriatic retinal images captured by clinical experts on fixed table-top retinal cameras within hospital settings. However, in many low- and middle-income countries, screening for DR revolves...
Autores principales: | Nunez do Rio, Joan M., Nderitu, Paul, Bergeles, Christos, Sivaprasad, Sobha, Tan, Gavin S. W., Raman, Rajiv |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836386/ https://www.ncbi.nlm.nih.gov/pubmed/35160065 http://dx.doi.org/10.3390/jcm11030614 |
Ejemplares similares
-
Deep learning for gradability classification of handheld, non-mydriatic retinal images
por: Nderitu, Paul, et al.
Publicado: (2021) -
Using deep learning to detect diabetic retinopathy on handheld non-mydriatic retinal images acquired by field workers in community settings
por: Nunez do Rio, Joan M., et al.
Publicado: (2023) -
Mydriatics
Publicado: (1891) -
Mydriatics in Refraction
por: Bennett, Arthur G.
Publicado: (1896) -
Mydriatics in Refraction
por: Satterlee, Richard H.
Publicado: (1895)