Cargando…

Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling

Ti-3Al-2.5V alloy was usually the α phase of HCP structure at room temperature which had obvious anisotropy. During tube rolling, α grain would be influenced by stress-strain state, deformation amount, ‘Q’ ratio to result the preferred orientation and formed texture. In order to obtain radial textur...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qi, Hui, Songxiao, Ye, Wenjun, Xu, Zhe, Dai, Chun, Lin, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836667/
https://www.ncbi.nlm.nih.gov/pubmed/35160762
http://dx.doi.org/10.3390/ma15030817
_version_ 1784649736186232832
author Yang, Qi
Hui, Songxiao
Ye, Wenjun
Xu, Zhe
Dai, Chun
Lin, Yuan
author_facet Yang, Qi
Hui, Songxiao
Ye, Wenjun
Xu, Zhe
Dai, Chun
Lin, Yuan
author_sort Yang, Qi
collection PubMed
description Ti-3Al-2.5V alloy was usually the α phase of HCP structure at room temperature which had obvious anisotropy. During tube rolling, α grain would be influenced by stress-strain state, deformation amount, ‘Q’ ratio to result the preferred orientation and formed texture. In order to obtain radial texture tube by rolling and improve the service quality of tube in the pipeline system, Φ25 mm Ti-3Al-2.5V alloy tubes was selected as billet for the experiment, and four kinds of tubes with outer diameter of Φ16mm was produced by single pass cold rolling with ‘Q’ ratios ranging from 0.65 to 2.0. The effect of ‘Q’ ratio on the texture of Ti-3Al-2.5V tube was studied. The result indicted that the initial texture of the tube is radial-circumferential equally distributed, and the radial basal texture enhances gradually with increasing ‘Q’ ratio. Since the angle between the C-axis of grain and the radial axis of RD decreases, the C-axis of grain distributes to the radial direction, and the more grain orientation from {112X} pyramidal to {0001} basal plane. The different ‘Q’ ratio would lead to different strain along the radial direction, circumferential direction, axial direction, thus affected the crystal orientation and distribution during tube rolling deformation. When ‘Q’ > 1, the tube mainly produced radial basal texture. By comparison with ‘Q’ < 1, the tube mainly produced circumferential basal texture. As a result, when the initial texture of the tube is radial-circumferential equally distributed, the ideal radial texture of the tube can be obtained by choosing rolling process with ‘Q’ > 2.0.
format Online
Article
Text
id pubmed-8836667
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88366672022-02-12 Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling Yang, Qi Hui, Songxiao Ye, Wenjun Xu, Zhe Dai, Chun Lin, Yuan Materials (Basel) Article Ti-3Al-2.5V alloy was usually the α phase of HCP structure at room temperature which had obvious anisotropy. During tube rolling, α grain would be influenced by stress-strain state, deformation amount, ‘Q’ ratio to result the preferred orientation and formed texture. In order to obtain radial texture tube by rolling and improve the service quality of tube in the pipeline system, Φ25 mm Ti-3Al-2.5V alloy tubes was selected as billet for the experiment, and four kinds of tubes with outer diameter of Φ16mm was produced by single pass cold rolling with ‘Q’ ratios ranging from 0.65 to 2.0. The effect of ‘Q’ ratio on the texture of Ti-3Al-2.5V tube was studied. The result indicted that the initial texture of the tube is radial-circumferential equally distributed, and the radial basal texture enhances gradually with increasing ‘Q’ ratio. Since the angle between the C-axis of grain and the radial axis of RD decreases, the C-axis of grain distributes to the radial direction, and the more grain orientation from {112X} pyramidal to {0001} basal plane. The different ‘Q’ ratio would lead to different strain along the radial direction, circumferential direction, axial direction, thus affected the crystal orientation and distribution during tube rolling deformation. When ‘Q’ > 1, the tube mainly produced radial basal texture. By comparison with ‘Q’ < 1, the tube mainly produced circumferential basal texture. As a result, when the initial texture of the tube is radial-circumferential equally distributed, the ideal radial texture of the tube can be obtained by choosing rolling process with ‘Q’ > 2.0. MDPI 2022-01-21 /pmc/articles/PMC8836667/ /pubmed/35160762 http://dx.doi.org/10.3390/ma15030817 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yang, Qi
Hui, Songxiao
Ye, Wenjun
Xu, Zhe
Dai, Chun
Lin, Yuan
Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling
title Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling
title_full Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling
title_fullStr Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling
title_full_unstemmed Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling
title_short Effect of ‘Q’ Ratio on Texture Evolution of Ti-3Al-2.5V Alloy Tube during Rolling
title_sort effect of ‘q’ ratio on texture evolution of ti-3al-2.5v alloy tube during rolling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836667/
https://www.ncbi.nlm.nih.gov/pubmed/35160762
http://dx.doi.org/10.3390/ma15030817
work_keys_str_mv AT yangqi effectofqratioontextureevolutionofti3al25valloytubeduringrolling
AT huisongxiao effectofqratioontextureevolutionofti3al25valloytubeduringrolling
AT yewenjun effectofqratioontextureevolutionofti3al25valloytubeduringrolling
AT xuzhe effectofqratioontextureevolutionofti3al25valloytubeduringrolling
AT daichun effectofqratioontextureevolutionofti3al25valloytubeduringrolling
AT linyuan effectofqratioontextureevolutionofti3al25valloytubeduringrolling