Cargando…

Effect of V Content and Heat Input on HAZ Softening of Deep-Sea Pipeline Steel

In this paper, the welding thermal cycle process of deep-sea pipeline steel was investigated by welding thermal simulation. The microstructure evolution, crystallology and second-phase precipitation behavior of the soft zone of the heat-affected zone (HAZ) were characterized and analyzed by combinin...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ba, Liu, Qingyou, Jia, Shujun, Ren, Yi, Yang, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836708/
https://www.ncbi.nlm.nih.gov/pubmed/35160739
http://dx.doi.org/10.3390/ma15030794
Descripción
Sumario:In this paper, the welding thermal cycle process of deep-sea pipeline steel was investigated by welding thermal simulation. The microstructure evolution, crystallology and second-phase precipitation behavior of the soft zone of the heat-affected zone (HAZ) were characterized and analyzed by combining scanning electron microscopy, electron back-scattered diffraction, transmission electron microscopy and hardness testing. The results show that HAZ softening appeared in the fine-grained zone with a peak temperature of 900–1000 °C for deep-sea pipeline steel, the base metal microstructure of which was the polygonal ferrite and acicular ferrite. Using V microalloying and low welding heat input could effectively decrease the softening of the HAZ fine-grained region, which was achieved by reducing the effective grain size, increasing the proportion of the dislocation substructures, and precipitating the nanoscale second-phase particles.