Cargando…
Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process
In the production of titanium alloy, the electron beam cold hearth melting (EBCHM) process is commonly used due to its effectiveness and the high quality of the end product. However, its main drawback is the significant loss of elements such as aluminum (Al) due to evaporation under the vacuum envir...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836968/ https://www.ncbi.nlm.nih.gov/pubmed/35160766 http://dx.doi.org/10.3390/ma15030820 |
_version_ | 1784649808114352128 |
---|---|
author | Truong, Van-Doi Hyun, Yong-Taek Won, Jong Woo Lee, Wonjoo Yoon, Jonghun |
author_facet | Truong, Van-Doi Hyun, Yong-Taek Won, Jong Woo Lee, Wonjoo Yoon, Jonghun |
author_sort | Truong, Van-Doi |
collection | PubMed |
description | In the production of titanium alloy, the electron beam cold hearth melting (EBCHM) process is commonly used due to its effectiveness and the high quality of the end product. However, its main drawback is the significant loss of elements such as aluminum (Al) due to evaporation under the vacuum environment. Numerical coupled thermal-flow models were here developed to investigate the effects of scanning strategies on Al loss in a titanium alloy during EBCHM. The validation model was successful in comparison with previously published experimental data. The Al mass fraction results at the outlet of the water-cooled hearth were strongly influenced by changes in the applied scanning strategies. The results indicated that the Al mass fraction loss could be reduced by using the full-hearth scanning strategies. |
format | Online Article Text |
id | pubmed-8836968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88369682022-02-12 Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process Truong, Van-Doi Hyun, Yong-Taek Won, Jong Woo Lee, Wonjoo Yoon, Jonghun Materials (Basel) Article In the production of titanium alloy, the electron beam cold hearth melting (EBCHM) process is commonly used due to its effectiveness and the high quality of the end product. However, its main drawback is the significant loss of elements such as aluminum (Al) due to evaporation under the vacuum environment. Numerical coupled thermal-flow models were here developed to investigate the effects of scanning strategies on Al loss in a titanium alloy during EBCHM. The validation model was successful in comparison with previously published experimental data. The Al mass fraction results at the outlet of the water-cooled hearth were strongly influenced by changes in the applied scanning strategies. The results indicated that the Al mass fraction loss could be reduced by using the full-hearth scanning strategies. MDPI 2022-01-21 /pmc/articles/PMC8836968/ /pubmed/35160766 http://dx.doi.org/10.3390/ma15030820 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Truong, Van-Doi Hyun, Yong-Taek Won, Jong Woo Lee, Wonjoo Yoon, Jonghun Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process |
title | Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process |
title_full | Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process |
title_fullStr | Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process |
title_full_unstemmed | Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process |
title_short | Numerical Simulation of the Effects of Scanning Strategies on the Aluminum Evaporation of Titanium Alloy in the Electron Beam Cold Hearth Melting Process |
title_sort | numerical simulation of the effects of scanning strategies on the aluminum evaporation of titanium alloy in the electron beam cold hearth melting process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836968/ https://www.ncbi.nlm.nih.gov/pubmed/35160766 http://dx.doi.org/10.3390/ma15030820 |
work_keys_str_mv | AT truongvandoi numericalsimulationoftheeffectsofscanningstrategiesonthealuminumevaporationoftitaniumalloyintheelectronbeamcoldhearthmeltingprocess AT hyunyongtaek numericalsimulationoftheeffectsofscanningstrategiesonthealuminumevaporationoftitaniumalloyintheelectronbeamcoldhearthmeltingprocess AT wonjongwoo numericalsimulationoftheeffectsofscanningstrategiesonthealuminumevaporationoftitaniumalloyintheelectronbeamcoldhearthmeltingprocess AT leewonjoo numericalsimulationoftheeffectsofscanningstrategiesonthealuminumevaporationoftitaniumalloyintheelectronbeamcoldhearthmeltingprocess AT yoonjonghun numericalsimulationoftheeffectsofscanningstrategiesonthealuminumevaporationoftitaniumalloyintheelectronbeamcoldhearthmeltingprocess |