Cargando…
Polymer Stabilization of Uniform Lying Helix Texture in a Bimesogen-Doped Cholesteric Liquid Crystal for Frequency-Modulated Electro-Optic Responses
A polymer network (PN) can sustain the uniform lying helix (ULH) texture in a binary cholesteric liquid crystal (LC) comprising a calamitic LC and a bimesogenic LC dimer. Upon copolymerization of a bifunctional monomer with a trifunctional monomer at a concentration of 5 wt% to create the desired po...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837131/ https://www.ncbi.nlm.nih.gov/pubmed/35160716 http://dx.doi.org/10.3390/ma15030771 |
Sumario: | A polymer network (PN) can sustain the uniform lying helix (ULH) texture in a binary cholesteric liquid crystal (LC) comprising a calamitic LC and a bimesogenic LC dimer. Upon copolymerization of a bifunctional monomer with a trifunctional monomer at a concentration of 5 wt% to create the desired polymer network structure, the PN-ULH was obtained with high stability and recoverability even when cycles of helical unwinding-to-rewinding processes were induced after the electrical or thermal treatment. Utilizing dielectric spectroscopy, the flexoelectric-polarization-dominated dielectric relaxation in the PN-ULH state was characterized to determine two frequency regions, f < f(flexo) and f > f(di), with pronounced and suppressed flexoelectric effect, respectively. It is demonstrated that the cell in the PN-ULH state can operate in the light-intensity modulation mode by the flexoelectric and dielectric effects at f < f(flexo) and phase-shift mode by the dielectric effect at f > f(di). Moreover, varying the voltage frequency from f < f(flexo) to f > f(di) results in a frequency dispersion of transmittance analogous to that of flexoelectric-polarization-dominated dielectric relaxation. The unique combination of the bimesogen-doped cholesteric LC with a stable and recoverable PN-ULH texture is thus promising for developing a frequency-modulated electro-optic device. |
---|