Cargando…
Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement
Based on the characterization of the bond between Fiber-Reinforced Polymer (FRP) bars and concrete, the structural behavior of cracked Glass-FRP (GFRP)-Reinforced Concrete (RC) tensile elements is studied in this paper. Simulations in which different bond-slip laws between both materials (FRP reinfo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837154/ https://www.ncbi.nlm.nih.gov/pubmed/35160745 http://dx.doi.org/10.3390/ma15030799 |
_version_ | 1784649854605066240 |
---|---|
author | Baena, Marta Barris, Cristina Perera, Ricardo Torres, Lluís |
author_facet | Baena, Marta Barris, Cristina Perera, Ricardo Torres, Lluís |
author_sort | Baena, Marta |
collection | PubMed |
description | Based on the characterization of the bond between Fiber-Reinforced Polymer (FRP) bars and concrete, the structural behavior of cracked Glass-FRP (GFRP)-Reinforced Concrete (RC) tensile elements is studied in this paper. Simulations in which different bond-slip laws between both materials (FRP reinforcement and concrete) were used to analyze the effect of GFRP bar bond performance on the load transfer process and how it affects the load-mean strain curve, the distribution of reinforcement strain, the distribution of slip between reinforcement and concrete, and the tension stiffening effect. Additionally, a parametric study on the effect of materials (concrete grade, modulus of elasticity of the reinforcing bar, surface configuration, and reinforcement ratio) on the load-mean strain curve and the tension stiffening effect was also performed. Results from a previous experimental program, in combination with additional results obtained from Finite Element Analysis (FEA), were used to demonstrate the accuracy of the model to correctly predict the global (load-mean strain curve) and local (distribution of strains between cracks) structural behavior of the GFRP RC tensile elements. |
format | Online Article Text |
id | pubmed-8837154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88371542022-02-12 Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement Baena, Marta Barris, Cristina Perera, Ricardo Torres, Lluís Materials (Basel) Article Based on the characterization of the bond between Fiber-Reinforced Polymer (FRP) bars and concrete, the structural behavior of cracked Glass-FRP (GFRP)-Reinforced Concrete (RC) tensile elements is studied in this paper. Simulations in which different bond-slip laws between both materials (FRP reinforcement and concrete) were used to analyze the effect of GFRP bar bond performance on the load transfer process and how it affects the load-mean strain curve, the distribution of reinforcement strain, the distribution of slip between reinforcement and concrete, and the tension stiffening effect. Additionally, a parametric study on the effect of materials (concrete grade, modulus of elasticity of the reinforcing bar, surface configuration, and reinforcement ratio) on the load-mean strain curve and the tension stiffening effect was also performed. Results from a previous experimental program, in combination with additional results obtained from Finite Element Analysis (FEA), were used to demonstrate the accuracy of the model to correctly predict the global (load-mean strain curve) and local (distribution of strains between cracks) structural behavior of the GFRP RC tensile elements. MDPI 2022-01-21 /pmc/articles/PMC8837154/ /pubmed/35160745 http://dx.doi.org/10.3390/ma15030799 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Baena, Marta Barris, Cristina Perera, Ricardo Torres, Lluís Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement |
title | Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement |
title_full | Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement |
title_fullStr | Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement |
title_full_unstemmed | Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement |
title_short | Influence of Bond Characterization on Load-Mean Strain and Tension Stiffening Behavior of Concrete Elements Reinforced with Embedded FRP Reinforcement |
title_sort | influence of bond characterization on load-mean strain and tension stiffening behavior of concrete elements reinforced with embedded frp reinforcement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837154/ https://www.ncbi.nlm.nih.gov/pubmed/35160745 http://dx.doi.org/10.3390/ma15030799 |
work_keys_str_mv | AT baenamarta influenceofbondcharacterizationonloadmeanstrainandtensionstiffeningbehaviorofconcreteelementsreinforcedwithembeddedfrpreinforcement AT barriscristina influenceofbondcharacterizationonloadmeanstrainandtensionstiffeningbehaviorofconcreteelementsreinforcedwithembeddedfrpreinforcement AT pereraricardo influenceofbondcharacterizationonloadmeanstrainandtensionstiffeningbehaviorofconcreteelementsreinforcedwithembeddedfrpreinforcement AT torreslluis influenceofbondcharacterizationonloadmeanstrainandtensionstiffeningbehaviorofconcreteelementsreinforcedwithembeddedfrpreinforcement |