Cargando…
Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions
High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plan...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837171/ https://www.ncbi.nlm.nih.gov/pubmed/35163740 http://dx.doi.org/10.3390/ijms23031817 |
_version_ | 1784649858626355200 |
---|---|
author | Yu, Bingwei Ming, Fangyan Liang, Yonggui Wang, Yixi Gan, Yuwei Qiu, Zhengkun Yan, Shuangshuang Cao, Bihao |
author_facet | Yu, Bingwei Ming, Fangyan Liang, Yonggui Wang, Yixi Gan, Yuwei Qiu, Zhengkun Yan, Shuangshuang Cao, Bihao |
author_sort | Yu, Bingwei |
collection | PubMed |
description | High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress. |
format | Online Article Text |
id | pubmed-8837171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88371712022-02-12 Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions Yu, Bingwei Ming, Fangyan Liang, Yonggui Wang, Yixi Gan, Yuwei Qiu, Zhengkun Yan, Shuangshuang Cao, Bihao Int J Mol Sci Article High temperatures affect the yield and quality of vegetable crops. Unlike thermosensitive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory genes were assessed through transcriptome analysis to understand the mechanisms for heat stress resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability, and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR), brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however, the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber heat resistance is regulated by a few transcription factor family genes and metabolic pathways. Our study revealed different phenotypic and physiological mechanisms of the heat response by the thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber varieties were also identified. These results enhance our understanding of the molecular mechanisms of cucumber response to high-temperature stress. MDPI 2022-02-05 /pmc/articles/PMC8837171/ /pubmed/35163740 http://dx.doi.org/10.3390/ijms23031817 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Bingwei Ming, Fangyan Liang, Yonggui Wang, Yixi Gan, Yuwei Qiu, Zhengkun Yan, Shuangshuang Cao, Bihao Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions |
title | Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions |
title_full | Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions |
title_fullStr | Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions |
title_full_unstemmed | Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions |
title_short | Heat Stress Resistance Mechanisms of Two Cucumber Varieties from Different Regions |
title_sort | heat stress resistance mechanisms of two cucumber varieties from different regions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837171/ https://www.ncbi.nlm.nih.gov/pubmed/35163740 http://dx.doi.org/10.3390/ijms23031817 |
work_keys_str_mv | AT yubingwei heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions AT mingfangyan heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions AT liangyonggui heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions AT wangyixi heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions AT ganyuwei heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions AT qiuzhengkun heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions AT yanshuangshuang heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions AT caobihao heatstressresistancemechanismsoftwocucumbervarietiesfromdifferentregions |