Cargando…

Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism

Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bact...

Descripción completa

Detalles Bibliográficos
Autores principales: Tejedor-Sanz, Sara, Stevens, Eric T, Li, Siliang, Finnegan, Peter, Nelson, James, Knoesen, Andre, Light, Samuel H, Ajo-Franklin, Caroline M, Marco, Maria L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837199/
https://www.ncbi.nlm.nih.gov/pubmed/35147079
http://dx.doi.org/10.7554/eLife.70684
_version_ 1784649863875526656
author Tejedor-Sanz, Sara
Stevens, Eric T
Li, Siliang
Finnegan, Peter
Nelson, James
Knoesen, Andre
Light, Samuel H
Ajo-Franklin, Caroline M
Marco, Maria L
author_facet Tejedor-Sanz, Sara
Stevens, Eric T
Li, Siliang
Finnegan, Peter
Nelson, James
Knoesen, Andre
Light, Samuel H
Ajo-Franklin, Caroline M
Marco, Maria L
author_sort Tejedor-Sanz, Sara
collection PubMed
description Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB Lactiplantibacillus plantarum uses extracellular electron transfer to increase its NAD(+)/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly. This novel, hybrid metabolism is dependent on a type-II NADH dehydrogenase (Ndh2) and conditionally requires a flavin-binding extracellular lipoprotein (PplA) under laboratory conditions. It confers increased fermentation product yield, metabolic flux, and environmental acidification in laboratory media and during kale juice fermentation. The discovery of a single pathway that simultaneously blends features of fermentation and respiration in a primarily fermentative microorganism expands our knowledge of energy conservation and provides immediate biotechnology applications.
format Online
Article
Text
id pubmed-8837199
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-88371992022-02-14 Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism Tejedor-Sanz, Sara Stevens, Eric T Li, Siliang Finnegan, Peter Nelson, James Knoesen, Andre Light, Samuel H Ajo-Franklin, Caroline M Marco, Maria L eLife Biochemistry and Chemical Biology Energy conservation in microorganisms is classically categorized into respiration and fermentation; however, recent work shows some species can use mixed or alternative bioenergetic strategies. We explored the use of extracellular electron transfer for energy conservation in diverse lactic acid bacteria (LAB), microorganisms that mainly rely on fermentative metabolism and are important in food fermentations. The LAB Lactiplantibacillus plantarum uses extracellular electron transfer to increase its NAD(+)/NADH ratio, generate more ATP through substrate-level phosphorylation, and accumulate biomass more rapidly. This novel, hybrid metabolism is dependent on a type-II NADH dehydrogenase (Ndh2) and conditionally requires a flavin-binding extracellular lipoprotein (PplA) under laboratory conditions. It confers increased fermentation product yield, metabolic flux, and environmental acidification in laboratory media and during kale juice fermentation. The discovery of a single pathway that simultaneously blends features of fermentation and respiration in a primarily fermentative microorganism expands our knowledge of energy conservation and provides immediate biotechnology applications. eLife Sciences Publications, Ltd 2022-02-11 /pmc/articles/PMC8837199/ /pubmed/35147079 http://dx.doi.org/10.7554/eLife.70684 Text en © 2022, Tejedor-Sanz et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biochemistry and Chemical Biology
Tejedor-Sanz, Sara
Stevens, Eric T
Li, Siliang
Finnegan, Peter
Nelson, James
Knoesen, Andre
Light, Samuel H
Ajo-Franklin, Caroline M
Marco, Maria L
Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism
title Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism
title_full Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism
title_fullStr Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism
title_full_unstemmed Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism
title_short Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism
title_sort extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism
topic Biochemistry and Chemical Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837199/
https://www.ncbi.nlm.nih.gov/pubmed/35147079
http://dx.doi.org/10.7554/eLife.70684
work_keys_str_mv AT tejedorsanzsara extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT stevenserict extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT lisiliang extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT finneganpeter extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT nelsonjames extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT knoesenandre extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT lightsamuelh extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT ajofranklincarolinem extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism
AT marcomarial extracellularelectrontransferincreasesfermentationinlacticacidbacteriaviaahybridmetabolism