Cargando…
From complex data to biological insight: ‘DEKER’ feature selection and network inference
Network inference is a valuable approach for gaining mechanistic insight from high-dimensional biological data. Existing methods for network inference focus on ranking all possible relations (edges) among all measured quantities such as genes, proteins, metabolites (features) observed, which yields...
Autores principales: | Hayes, Sean M. S., Sachs, Jeffrey R., Cho, Carolyn R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837529/ https://www.ncbi.nlm.nih.gov/pubmed/34791577 http://dx.doi.org/10.1007/s10928-021-09792-7 |
Ejemplares similares
-
Inference of complex biological networks: distinguishability issues and optimization-based solutions
por: Szederkényi, Gábor, et al.
Publicado: (2011) -
FASTENER Feature Selection for Inference from Earth Observation Data
por: Koprivec, Filip, et al.
Publicado: (2020) -
Probabilistic Inference of Biological Networks via Data Integration
por: Rogers, Mark F., et al.
Publicado: (2015) -
Feature Selection in the Reconstruction of Complex Network Representations of Spectral Data
por: Zanin, Massimiliano, et al.
Publicado: (2013) -
Assessing the gain of biological data integration in gene networks inference
por: Vicente, Fábio FR, et al.
Publicado: (2012)