Cargando…
Understanding virtual patients efficiently and rigorously by combining machine learning with dynamical modelling
Individual biological organisms are characterized by daunting heterogeneity, which precludes describing or understanding populations of ‘patients’ with a single mathematical model. Recently, the field of quantitative systems pharmacology (QSP) has adopted the notion of virtual patients (VPs) to cope...
Autores principales: | Zhang, Tongli, Tyson, John J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837571/ https://www.ncbi.nlm.nih.gov/pubmed/34985622 http://dx.doi.org/10.1007/s10928-021-09798-1 |
Ejemplares similares
-
Designing combination therapies with modeling chaperoned machine learning
por: Zhang, Yin, et al.
Publicado: (2019) -
Extracting Insights From Temporal Data by Integrating Dynamic Modeling and Machine Learning
por: Ballweg, Richard, et al.
Publicado: (2020) -
Biosimilars in rheumatology: understanding the rigor of their development
por: Goel, Niti, et al.
Publicado: (2017) -
A Modeling and Machine Learning Pipeline to Rationally Design Treatments to Restore Neuroendocrine Disorders in Heterogeneous Individuals
por: Zhang, Tongli
Publicado: (2021) -
Getting rigorous with scientific rigor
por: Hofseth, Lorne J
Publicado: (2018)