Cargando…
Mitigating site effects in covariance for machine learning in neuroimaging data
To acquire larger samples for answering complex questions in neuroscience, researchers have increasingly turned to multi‐site neuroimaging studies. However, these studies are hindered by differences in images acquired across multiple sites. These effects have been shown to bias comparison between si...
Autores principales: | Chen, Andrew A., Beer, Joanne C., Tustison, Nicholas J., Cook, Philip A., Shinohara, Russell T., Shou, Haochang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837590/ https://www.ncbi.nlm.nih.gov/pubmed/34904312 http://dx.doi.org/10.1002/hbm.25688 |
Ejemplares similares
-
DeepComBat: A Statistically Motivated, Hyperparameter-Robust, Deep Learning Approach to Harmonization of Neuroimaging Data
por: Hu, Fengling, et al.
Publicado: (2023) -
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data()
por: Beer, Joanne C., et al.
Publicado: (2020) -
ANTsX neuroimaging-derived structural phenotypes of UK Biobank
por: Tustison, Nicholas J., et al.
Publicado: (2023) -
Evaluation of machine learning methods for covariate data imputation in pharmacometrics
por: Bräm, Dominic Stefan, et al.
Publicado: (2022) -
Covariances in computer vision and machine learning
por: HÃ Quang, Minh, et al.
Publicado: (2017)