Cargando…

Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance

In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ottilie, Sabine, Luth, Madeline R., Hellemann, Erich, Goldgof, Gregory M., Vigil, Eddy, Kumar, Prianka, Cheung, Andrea L., Song, Miranda, Godinez-Macias, Karla P., Carolino, Krypton, Yang, Jennifer, Lopez, Gisel, Abraham, Matthew, Tarsio, Maureen, LeBlanc, Emmanuelle, Whitesell, Luke, Schenken, Jake, Gunawan, Felicia, Patel, Reysha, Smith, Joshua, Love, Melissa S., Williams, Roy M., McNamara, Case W., Gerwick, William H., Ideker, Trey, Suzuki, Yo, Wirth, Dyann F., Lukens, Amanda K., Kane, Patricia M., Cowen, Leah E., Durrant, Jacob D., Winzeler, Elizabeth A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837787/
https://www.ncbi.nlm.nih.gov/pubmed/35149760
http://dx.doi.org/10.1038/s42003-022-03076-7
_version_ 1784649976667701248
author Ottilie, Sabine
Luth, Madeline R.
Hellemann, Erich
Goldgof, Gregory M.
Vigil, Eddy
Kumar, Prianka
Cheung, Andrea L.
Song, Miranda
Godinez-Macias, Karla P.
Carolino, Krypton
Yang, Jennifer
Lopez, Gisel
Abraham, Matthew
Tarsio, Maureen
LeBlanc, Emmanuelle
Whitesell, Luke
Schenken, Jake
Gunawan, Felicia
Patel, Reysha
Smith, Joshua
Love, Melissa S.
Williams, Roy M.
McNamara, Case W.
Gerwick, William H.
Ideker, Trey
Suzuki, Yo
Wirth, Dyann F.
Lukens, Amanda K.
Kane, Patricia M.
Cowen, Leah E.
Durrant, Jacob D.
Winzeler, Elizabeth A.
author_facet Ottilie, Sabine
Luth, Madeline R.
Hellemann, Erich
Goldgof, Gregory M.
Vigil, Eddy
Kumar, Prianka
Cheung, Andrea L.
Song, Miranda
Godinez-Macias, Karla P.
Carolino, Krypton
Yang, Jennifer
Lopez, Gisel
Abraham, Matthew
Tarsio, Maureen
LeBlanc, Emmanuelle
Whitesell, Luke
Schenken, Jake
Gunawan, Felicia
Patel, Reysha
Smith, Joshua
Love, Melissa S.
Williams, Roy M.
McNamara, Case W.
Gerwick, William H.
Ideker, Trey
Suzuki, Yo
Wirth, Dyann F.
Lukens, Amanda K.
Kane, Patricia M.
Cowen, Leah E.
Durrant, Jacob D.
Winzeler, Elizabeth A.
author_sort Ottilie, Sabine
collection PubMed
description In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn(2)C(6) transcription factors YRR1 and YRM1 (p < 1 × 10(−100)). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency.
format Online
Article
Text
id pubmed-8837787
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88377872022-03-02 Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance Ottilie, Sabine Luth, Madeline R. Hellemann, Erich Goldgof, Gregory M. Vigil, Eddy Kumar, Prianka Cheung, Andrea L. Song, Miranda Godinez-Macias, Karla P. Carolino, Krypton Yang, Jennifer Lopez, Gisel Abraham, Matthew Tarsio, Maureen LeBlanc, Emmanuelle Whitesell, Luke Schenken, Jake Gunawan, Felicia Patel, Reysha Smith, Joshua Love, Melissa S. Williams, Roy M. McNamara, Case W. Gerwick, William H. Ideker, Trey Suzuki, Yo Wirth, Dyann F. Lukens, Amanda K. Kane, Patricia M. Cowen, Leah E. Durrant, Jacob D. Winzeler, Elizabeth A. Commun Biol Article In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn(2)C(6) transcription factors YRR1 and YRM1 (p < 1 × 10(−100)). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency. Nature Publishing Group UK 2022-02-11 /pmc/articles/PMC8837787/ /pubmed/35149760 http://dx.doi.org/10.1038/s42003-022-03076-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ottilie, Sabine
Luth, Madeline R.
Hellemann, Erich
Goldgof, Gregory M.
Vigil, Eddy
Kumar, Prianka
Cheung, Andrea L.
Song, Miranda
Godinez-Macias, Karla P.
Carolino, Krypton
Yang, Jennifer
Lopez, Gisel
Abraham, Matthew
Tarsio, Maureen
LeBlanc, Emmanuelle
Whitesell, Luke
Schenken, Jake
Gunawan, Felicia
Patel, Reysha
Smith, Joshua
Love, Melissa S.
Williams, Roy M.
McNamara, Case W.
Gerwick, William H.
Ideker, Trey
Suzuki, Yo
Wirth, Dyann F.
Lukens, Amanda K.
Kane, Patricia M.
Cowen, Leah E.
Durrant, Jacob D.
Winzeler, Elizabeth A.
Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
title Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
title_full Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
title_fullStr Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
title_full_unstemmed Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
title_short Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
title_sort adaptive laboratory evolution in s. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837787/
https://www.ncbi.nlm.nih.gov/pubmed/35149760
http://dx.doi.org/10.1038/s42003-022-03076-7
work_keys_str_mv AT ottiliesabine adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT luthmadeliner adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT hellemannerich adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT goldgofgregorym adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT vigileddy adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT kumarprianka adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT cheungandreal adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT songmiranda adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT godinezmaciaskarlap adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT carolinokrypton adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT yangjennifer adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT lopezgisel adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT abrahammatthew adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT tarsiomaureen adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT leblancemmanuelle adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT whitesellluke adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT schenkenjake adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT gunawanfelicia adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT patelreysha adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT smithjoshua adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT lovemelissas adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT williamsroym adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT mcnamaracasew adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT gerwickwilliamh adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT idekertrey adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT suzukiyo adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT wirthdyannf adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT lukensamandak adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT kanepatriciam adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT cowenleahe adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT durrantjacobd adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance
AT winzelerelizabetha adaptivelaboratoryevolutioninscerevisiaehighlightsroleoftranscriptionfactorsinfungalxenobioticresistance