Cargando…
Adopting the YOLOv4 Architecture for Low-Latency Multispectral Pedestrian Detection in Autonomous Driving
Detecting pedestrians in autonomous driving is a safety-critical task, and the decision to avoid a a person has to be made with minimal latency. Multispectral approaches that combine RGB and thermal images are researched extensively, as they make it possible to gain robustness under varying illumina...
Autores principales: | Roszyk, Kamil, Nowicki, Michał R., Skrzypczyński, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837921/ https://www.ncbi.nlm.nih.gov/pubmed/35161827 http://dx.doi.org/10.3390/s22031082 |
Ejemplares similares
-
YOLOv5-AC: Attention Mechanism-Based Lightweight YOLOv5 for Track Pedestrian Detection
por: Lv, Haohui, et al.
Publicado: (2022) -
Pedestrian detection model based on Tiny-Yolov3 architecture for wearable devices to visually impaired assistance
por: Maya-Martínez, Sergio-Uriel, et al.
Publicado: (2023) -
Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images
por: Kong, Hao, et al.
Publicado: (2022) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023) -
Attention Fusion for One-Stage Multispectral Pedestrian Detection
por: Cao, Zhiwei, et al.
Publicado: (2021)