Cargando…
Proactive Handover Decision for UAVs with Deep Reinforcement Learning
The applications of Unmanned Aerial Vehicles (UAVs) are rapidly growing in domains such as surveillance, logistics, and entertainment and require continuous connectivity with cellular networks to ensure their seamless operations. However, handover policies in current cellular networks are primarily...
Autores principales: | Jang, Younghoon, Raza, Syed M., Kim, Moonseong, Choo, Hyunseung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838000/ https://www.ncbi.nlm.nih.gov/pubmed/35161945 http://dx.doi.org/10.3390/s22031200 |
Ejemplares similares
-
Empirical Performance and Energy Consumption Evaluation of Container Solutions on Resource Constrained IoT Gateways
por: Raza, Syed M., et al.
Publicado: (2021) -
A UAV Maneuver Decision-Making Algorithm for Autonomous Airdrop Based on Deep Reinforcement Learning
por: Li, Ke, et al.
Publicado: (2021) -
Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets
por: Kang, Byungseok, et al.
Publicado: (2017) -
Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance
por: Arranz, Raúl, et al.
Publicado: (2023) -
UAVs Maneuver Decision-Making Method Based on Transfer Reinforcement Learning
por: Zhu, Jindong, et al.
Publicado: (2022)