Cargando…
Online Detection of Surface Defects Based on Improved YOLOV3
Aiming at the problems of low efficiency and poor accuracy in the product surface defect detection. In this paper, an online surface defects detection method based on YOLOV3 is proposed. Firstly, using lightweight network MobileNetV2 to replace the original backbone as the feature extractor to impro...
Autores principales: | Chen, Xuechun, Lv, Jun, Fang, Yulun, Du, Shichang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838028/ https://www.ncbi.nlm.nih.gov/pubmed/35161562 http://dx.doi.org/10.3390/s22030817 |
Ejemplares similares
-
Metal surface defect detection based on improved YOLOv5
por: Zhou, Chuande, et al.
Publicado: (2023) -
GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
por: Zhao, Yue, et al.
Publicado: (2023) -
Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network
por: Xu, Haitao, et al.
Publicado: (2023) -
BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
por: Wang, Xueqiu, et al.
Publicado: (2023) -
Research on steel rail surface defects detection based on improved YOLOv4 network
por: Mi, Zengzhen, et al.
Publicado: (2023)