Cargando…
Modified U-NET Architecture for Segmentation of Skin Lesion
Dermoscopy images can be classified more accurately if skin lesions or nodules are segmented. Because of their fuzzy borders, irregular boundaries, inter- and intra-class variances, and so on, nodule segmentation is a difficult task. For the segmentation of skin lesions from dermoscopic pictures, se...
Autores principales: | Anand, Vatsala, Gupta, Sheifali, Koundal, Deepika, Nayak, Soumya Ranjan, Barsocchi, Paolo, Bhoi, Akash Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838042/ https://www.ncbi.nlm.nih.gov/pubmed/35161613 http://dx.doi.org/10.3390/s22030867 |
Ejemplares similares
-
U-Net Model with Transfer Learning Model as a Backbone for Segmentation of Gastrointestinal Tract
por: Sharma, Neha, et al.
Publicado: (2023) -
An Enhanced Transfer Learning Based Classification for Diagnosis of Skin Cancer
por: Anand, Vatsala, et al.
Publicado: (2022) -
Deep Neural Networks for Medical Image Segmentation
por: Malhotra, Priyanka, et al.
Publicado: (2022) -
Anti-Aliasing Attention U-net Model for Skin Lesion Segmentation
por: Le, Phuong Thi, et al.
Publicado: (2023) -
Image Semantic Segmentation of Underwater Garbage with Modified U-Net Architecture Model
por: Wei, Lifu, et al.
Publicado: (2022)