Cargando…

Color-Dense Illumination Adjustment Network for Removing Haze and Smoke from Fire Scenario Images

The atmospheric particles and aerosols from burning usually cause visual artifacts in single images captured from fire scenarios. Most existing haze removal methods exploit the atmospheric scattering model (ASM) for visual enhancement, which inevitably leads to inaccurate estimation of the atmospher...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chuansheng, Hu, Jinxing, Luo, Xiaowei, Kwan, Mei-Po, Chen, Weihua, Wang, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838094/
https://www.ncbi.nlm.nih.gov/pubmed/35161660
http://dx.doi.org/10.3390/s22030911
Descripción
Sumario:The atmospheric particles and aerosols from burning usually cause visual artifacts in single images captured from fire scenarios. Most existing haze removal methods exploit the atmospheric scattering model (ASM) for visual enhancement, which inevitably leads to inaccurate estimation of the atmosphere light and transmission matrix of the smoky and hazy inputs. To solve these problems, we present a novel color-dense illumination adjustment network (CIANet) for joint recovery of transmission matrix, illumination intensity, and the dominant color of aerosols from a single image. Meanwhile, to improve the visual effects of the recovered images, the proposed CIANet jointly optimizes the transmission map, atmospheric optical value, the color of aerosol, and a preliminary recovered scene. Furthermore, we designed a reformulated ASM, called the aerosol scattering model (ESM), to smooth out the enhancement results while keeping the visual effects and the semantic information of different objects. Experimental results on both the proposed RFSIE and NTIRE’20 demonstrate our superior performance favorably against state-of-the-art dehazing methods regarding PSNR, SSIM and subjective visual quality. Furthermore, when concatenating CIANet with Faster R-CNN, we witness an improvement of the objection performance with a large margin.