Cargando…
Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images
Automatic melanoma detection from dermoscopic skin samples is a very challenging task. However, using a deep learning approach as a machine vision tool can overcome some challenges. This research proposes an automated melanoma classifier based on a deep convolutional neural network (DCNN) to accurat...
Autores principales: | Kaur, Ranpreet, GholamHosseini, Hamid, Sinha, Roopak, Lindén, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838143/ https://www.ncbi.nlm.nih.gov/pubmed/35161878 http://dx.doi.org/10.3390/s22031134 |
Ejemplares similares
-
Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images
por: Kaur, Ranpreet, et al.
Publicado: (2022) -
Acral melanoma detection using dermoscopic images and convolutional neural networks
por: Abbas, Qaiser, et al.
Publicado: (2021) -
Dermoscopic Image Classification Method Using an Ensemble of Fine-Tuned Convolutional Neural Networks
por: Shen, Xin, et al.
Publicado: (2022) -
Skin lesion classification of dermoscopic images using machine learning and convolutional neural network
por: Shetty, Bhuvaneshwari, et al.
Publicado: (2022) -
Evaluation of Melanoma Thickness with Clinical Close-up and Dermoscopic Images Using a Convolutional Neural Network
por: GILLSTEDT, Martin, et al.
Publicado: (2022)