Cargando…
The Impact of LED Lighting Spectra in a Plant Factory on the Growth, Physiological Traits and Essential Oil Content of Lemon Balm (Melissa officinalis)
With the recent development of LED lighting systems for plant cultivation, the use of vertical farming under controlled conditions is attracting increased attention. This study investigated the impact of a number of LED light spectra (red, blue, green and white) on the growth, development and essent...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838210/ https://www.ncbi.nlm.nih.gov/pubmed/35161322 http://dx.doi.org/10.3390/plants11030342 |
Sumario: | With the recent development of LED lighting systems for plant cultivation, the use of vertical farming under controlled conditions is attracting increased attention. This study investigated the impact of a number of LED light spectra (red, blue, green and white) on the growth, development and essential oil content of lemon balm (Melissa officinalis), a herb and pharmaceutical plant species used across the world. White light and red-rich light spectra gave the best outputs in terms of impact on the growth and yield. For blue-rich spectra, the development and yield was lower despite having a significant impact on the photosynthesis activity, including Fv/Fm and NDVI values. For the blue-rich spectra, a peak wavelength of 450 mn was better than that of 435 nm. The results have practical value in terms of increased yield and the reduction of electricity consumption under controlled environmental conditions for the commercial production of lemon balm. |
---|