Cargando…
Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method
This article presents an attempt to determine the effect of the MXene phase addition and its decomposition during sintering with the use of the spark plasma sintering method on mechanical properties and residual stress of silicon carbide based composites. For this purpose, the unreinforced silicon c...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838255/ https://www.ncbi.nlm.nih.gov/pubmed/35161116 http://dx.doi.org/10.3390/ma15031175 |
_version_ | 1784650081097482240 |
---|---|
author | Petrus, Mateusz Woźniak, Jarosław Kostecki, Marek Cygan, Tomasz Jastrzębska, Agnieszka Rozmysłowska-Wojciechowska, Anita Adamczyk-Cieślak, Bogusława Moszczyńska, Dorota Sienkiewicz, Maksymilian Marek, Piotr Gertych, Arkadiusz P. Zdrojek, Mariusz Olszyna, Andrzej |
author_facet | Petrus, Mateusz Woźniak, Jarosław Kostecki, Marek Cygan, Tomasz Jastrzębska, Agnieszka Rozmysłowska-Wojciechowska, Anita Adamczyk-Cieślak, Bogusława Moszczyńska, Dorota Sienkiewicz, Maksymilian Marek, Piotr Gertych, Arkadiusz P. Zdrojek, Mariusz Olszyna, Andrzej |
author_sort | Petrus, Mateusz |
collection | PubMed |
description | This article presents an attempt to determine the effect of the MXene phase addition and its decomposition during sintering with the use of the spark plasma sintering method on mechanical properties and residual stress of silicon carbide based composites. For this purpose, the unreinforced silicon carbide sinter and the silicon carbide composite with the addition of 2 wt.% of Ti(3)C(2)T(x) were tested. The results showed a significant increase of fracture toughness and hardness for composite, respectively 36% and 13%. The numerical study involving this novel method of modelling shows the presence of a complex state of stress in the material, which is related to the anisotropic properties of graphitic carbon structures formed during sintering. An attempt to determine the actual values of residual stress in the tested materials using Raman spectroscopy was also made. These tests showed a good correlation with the constructed numerical model and confirmed the presence of a complex state of residual stress. |
format | Online Article Text |
id | pubmed-8838255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88382552022-02-13 Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method Petrus, Mateusz Woźniak, Jarosław Kostecki, Marek Cygan, Tomasz Jastrzębska, Agnieszka Rozmysłowska-Wojciechowska, Anita Adamczyk-Cieślak, Bogusława Moszczyńska, Dorota Sienkiewicz, Maksymilian Marek, Piotr Gertych, Arkadiusz P. Zdrojek, Mariusz Olszyna, Andrzej Materials (Basel) Article This article presents an attempt to determine the effect of the MXene phase addition and its decomposition during sintering with the use of the spark plasma sintering method on mechanical properties and residual stress of silicon carbide based composites. For this purpose, the unreinforced silicon carbide sinter and the silicon carbide composite with the addition of 2 wt.% of Ti(3)C(2)T(x) were tested. The results showed a significant increase of fracture toughness and hardness for composite, respectively 36% and 13%. The numerical study involving this novel method of modelling shows the presence of a complex state of stress in the material, which is related to the anisotropic properties of graphitic carbon structures formed during sintering. An attempt to determine the actual values of residual stress in the tested materials using Raman spectroscopy was also made. These tests showed a good correlation with the constructed numerical model and confirmed the presence of a complex state of residual stress. MDPI 2022-02-03 /pmc/articles/PMC8838255/ /pubmed/35161116 http://dx.doi.org/10.3390/ma15031175 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Petrus, Mateusz Woźniak, Jarosław Kostecki, Marek Cygan, Tomasz Jastrzębska, Agnieszka Rozmysłowska-Wojciechowska, Anita Adamczyk-Cieślak, Bogusława Moszczyńska, Dorota Sienkiewicz, Maksymilian Marek, Piotr Gertych, Arkadiusz P. Zdrojek, Mariusz Olszyna, Andrzej Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method |
title | Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method |
title_full | Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method |
title_fullStr | Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method |
title_full_unstemmed | Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method |
title_short | Modelling and Characterisation of Residual Stress of SiC-Ti(3)C(2)T(x) MXene Composites Sintered via Spark Plasma Sintering Method |
title_sort | modelling and characterisation of residual stress of sic-ti(3)c(2)t(x) mxene composites sintered via spark plasma sintering method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838255/ https://www.ncbi.nlm.nih.gov/pubmed/35161116 http://dx.doi.org/10.3390/ma15031175 |
work_keys_str_mv | AT petrusmateusz modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT wozniakjarosław modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT kosteckimarek modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT cygantomasz modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT jastrzebskaagnieszka modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT rozmysłowskawojciechowskaanita modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT adamczykcieslakbogusława modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT moszczynskadorota modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT sienkiewiczmaksymilian modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT marekpiotr modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT gertycharkadiuszp modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT zdrojekmariusz modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod AT olszynaandrzej modellingandcharacterisationofresidualstressofsicti3c2txmxenecompositessinteredviasparkplasmasinteringmethod |