Cargando…
Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component
The present investigation aims to develop nanocrystalline (NC) pure aluminum powders using cryomilling technique and manufacture bulk components using spark plasma sintering (SPS). The cryomilling was performed on pure Al powders for 2, 6, and 8 h. The cryomilled powders were then consolidated using...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838288/ https://www.ncbi.nlm.nih.gov/pubmed/35159896 http://dx.doi.org/10.3390/nano12030551 |
_version_ | 1784650090330193920 |
---|---|
author | Kushwaha, Amanendra K. Maccione, Raven John, Merbin Lanka, Sridhar Misra, Manoranjan Menezes, Pradeep L. |
author_facet | Kushwaha, Amanendra K. Maccione, Raven John, Merbin Lanka, Sridhar Misra, Manoranjan Menezes, Pradeep L. |
author_sort | Kushwaha, Amanendra K. |
collection | PubMed |
description | The present investigation aims to develop nanocrystalline (NC) pure aluminum powders using cryomilling technique and manufacture bulk components using spark plasma sintering (SPS). The cryomilling was performed on pure Al powders for 2, 6, and 8 h. The cryomilled powders were then consolidated using SPS to produce bulk components. The particle morphology and crystallite size of the powders and the bulk SPS components were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the crystallite size of pure Al powders decreases with increased cryomilling time. The results also showed that the SPS at elevated temperatures resulted in a slight increase in crystallite size, however, the changes were insignificant. The mechanical properties of the bulk components were determined using a Vickers microhardness tester. The hardness of the cryomilled SPS component was determined to be three times higher than that of the unmilled SPS component. The mechanism for the reduction in crystallite size with increasing cryomilling time is discussed. This fundamental study provides an insight into the development of bulk nanomaterials with superior mechanical properties for automotive, aerospace, marine, and nuclear applications. |
format | Online Article Text |
id | pubmed-8838288 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88382882022-02-13 Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component Kushwaha, Amanendra K. Maccione, Raven John, Merbin Lanka, Sridhar Misra, Manoranjan Menezes, Pradeep L. Nanomaterials (Basel) Article The present investigation aims to develop nanocrystalline (NC) pure aluminum powders using cryomilling technique and manufacture bulk components using spark plasma sintering (SPS). The cryomilling was performed on pure Al powders for 2, 6, and 8 h. The cryomilled powders were then consolidated using SPS to produce bulk components. The particle morphology and crystallite size of the powders and the bulk SPS components were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the crystallite size of pure Al powders decreases with increased cryomilling time. The results also showed that the SPS at elevated temperatures resulted in a slight increase in crystallite size, however, the changes were insignificant. The mechanical properties of the bulk components were determined using a Vickers microhardness tester. The hardness of the cryomilled SPS component was determined to be three times higher than that of the unmilled SPS component. The mechanism for the reduction in crystallite size with increasing cryomilling time is discussed. This fundamental study provides an insight into the development of bulk nanomaterials with superior mechanical properties for automotive, aerospace, marine, and nuclear applications. MDPI 2022-02-06 /pmc/articles/PMC8838288/ /pubmed/35159896 http://dx.doi.org/10.3390/nano12030551 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kushwaha, Amanendra K. Maccione, Raven John, Merbin Lanka, Sridhar Misra, Manoranjan Menezes, Pradeep L. Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component |
title | Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component |
title_full | Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component |
title_fullStr | Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component |
title_full_unstemmed | Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component |
title_short | Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component |
title_sort | influence of cryomilling on crystallite size of aluminum powder and spark plasma sintered component |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838288/ https://www.ncbi.nlm.nih.gov/pubmed/35159896 http://dx.doi.org/10.3390/nano12030551 |
work_keys_str_mv | AT kushwahaamanendrak influenceofcryomillingoncrystallitesizeofaluminumpowderandsparkplasmasinteredcomponent AT maccioneraven influenceofcryomillingoncrystallitesizeofaluminumpowderandsparkplasmasinteredcomponent AT johnmerbin influenceofcryomillingoncrystallitesizeofaluminumpowderandsparkplasmasinteredcomponent AT lankasridhar influenceofcryomillingoncrystallitesizeofaluminumpowderandsparkplasmasinteredcomponent AT misramanoranjan influenceofcryomillingoncrystallitesizeofaluminumpowderandsparkplasmasinteredcomponent AT menezespradeepl influenceofcryomillingoncrystallitesizeofaluminumpowderandsparkplasmasinteredcomponent |