Cargando…

Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies

This paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load–depth responses. Ato...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Pham T. N., Abbès, Fazilay, Lecomte, Jean-Sébastien, Schuman, Christophe, Abbès, Boussad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838327/
https://www.ncbi.nlm.nih.gov/pubmed/35159645
http://dx.doi.org/10.3390/nano12030300
_version_ 1784650100278034432
author Nguyen, Pham T. N.
Abbès, Fazilay
Lecomte, Jean-Sébastien
Schuman, Christophe
Abbès, Boussad
author_facet Nguyen, Pham T. N.
Abbès, Fazilay
Lecomte, Jean-Sébastien
Schuman, Christophe
Abbès, Boussad
author_sort Nguyen, Pham T. N.
collection PubMed
description This paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load–depth responses. Atomic force microscopy revealed two-fold unsymmetrical material pile-up patterns. Obtaining crystal plasticity model parameters usually requires time-consuming micromechanical tests. Inverse analysis using experimental and simulated loading–unloading nanoindentation curves of individual grains is commonly used, however the solution to the inverse identification problem is not necessarily unique. In this study, an approach is presented allowing the identification of CPFEM constitutive parameters from nanoindentation curves and residual topographies. The proposed approach combines the response surface methodology together with a genetic algorithm to determine an optimal set of parameters. The CPFEM simulations corroborate with measured nanoindentation curves and residual profiles and reveal the evolution of deformation activity underneath the indenter.
format Online
Article
Text
id pubmed-8838327
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88383272022-02-13 Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies Nguyen, Pham T. N. Abbès, Fazilay Lecomte, Jean-Sébastien Schuman, Christophe Abbès, Boussad Nanomaterials (Basel) Article This paper investigates the orientation-dependent characteristics of pure zinc under localized loading using nanoindentation experiments and crystal plasticity finite element (CPFEM) simulations. Nanoindentation experiments on different grain orientations exhibited distinct load–depth responses. Atomic force microscopy revealed two-fold unsymmetrical material pile-up patterns. Obtaining crystal plasticity model parameters usually requires time-consuming micromechanical tests. Inverse analysis using experimental and simulated loading–unloading nanoindentation curves of individual grains is commonly used, however the solution to the inverse identification problem is not necessarily unique. In this study, an approach is presented allowing the identification of CPFEM constitutive parameters from nanoindentation curves and residual topographies. The proposed approach combines the response surface methodology together with a genetic algorithm to determine an optimal set of parameters. The CPFEM simulations corroborate with measured nanoindentation curves and residual profiles and reveal the evolution of deformation activity underneath the indenter. MDPI 2022-01-18 /pmc/articles/PMC8838327/ /pubmed/35159645 http://dx.doi.org/10.3390/nano12030300 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nguyen, Pham T. N.
Abbès, Fazilay
Lecomte, Jean-Sébastien
Schuman, Christophe
Abbès, Boussad
Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_full Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_fullStr Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_full_unstemmed Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_short Inverse Identification of Single-Crystal Plasticity Parameters of HCP Zinc from Nanoindentation Curves and Residual Topographies
title_sort inverse identification of single-crystal plasticity parameters of hcp zinc from nanoindentation curves and residual topographies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838327/
https://www.ncbi.nlm.nih.gov/pubmed/35159645
http://dx.doi.org/10.3390/nano12030300
work_keys_str_mv AT nguyenphamtn inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT abbesfazilay inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT lecomtejeansebastien inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT schumanchristophe inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies
AT abbesboussad inverseidentificationofsinglecrystalplasticityparametersofhcpzincfromnanoindentationcurvesandresidualtopographies