Cargando…
Bike-Sharing Demand Prediction at Community Level under COVID-19 Using Deep Learning
An important question in planning and designing bike-sharing services is to support the user’s travel demand by allocating bikes at the stations in an efficient and reliable manner which may require accurate short-time demand prediction. This study focuses on the short-term forecasting, 15 min ahead...
Autores principales: | Mehdizadeh Dastjerdi, Aliasghar, Morency, Catherine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838375/ https://www.ncbi.nlm.nih.gov/pubmed/35161806 http://dx.doi.org/10.3390/s22031060 |
Ejemplares similares
-
Excess demand prediction for bike sharing systems
por: Liu, Xin, et al.
Publicado: (2021) -
Bike sharing usage prediction with deep learning: a survey
por: Jiang, Weiwei
Publicado: (2022) -
A Demand-Centric Repositioning Strategy for Bike-Sharing Systems
por: Lin, Ying-Chih
Publicado: (2022) -
Demand Prediction and Optimal Allocation of Shared Bikes Around Urban Rail Transit Stations
por: Yu, Liang, et al.
Publicado: (2022) -
Bike share responses to COVID-19
por: Jobe, Jeffrey, et al.
Publicado: (2021)