Cargando…

A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS

A diagnosis scheme using the Hurst exponent for metal particle faults in GIL/GIS is proposed to improve the accuracy of classification and identification. First, the diagnosis source signal is the vibration signal generated by the collision of metal particles in the electric field. Then, the signal...

Descripción completa

Detalles Bibliográficos
Autores principales: Duan, Dawei, Ma, Hongzhong, Yan, Yan, Yang, Qifan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838382/
https://www.ncbi.nlm.nih.gov/pubmed/35161608
http://dx.doi.org/10.3390/s22030862
_version_ 1784650113581318144
author Duan, Dawei
Ma, Hongzhong
Yan, Yan
Yang, Qifan
author_facet Duan, Dawei
Ma, Hongzhong
Yan, Yan
Yang, Qifan
author_sort Duan, Dawei
collection PubMed
description A diagnosis scheme using the Hurst exponent for metal particle faults in GIL/GIS is proposed to improve the accuracy of classification and identification. First, the diagnosis source signal is the vibration signal generated by the collision of metal particles in the electric field. Then, the signal is processed via variational mode decomposition (VMD) based on particle swarm optimization with adaptive parameter adjustment (APA-PSO). In the end, fault types are classified and identified by an SVM model, whose feature vector is composed of the Hurst exponents of each intrinsic mode function (IMF-H). Extensive experimental data verify the effect of this new scheme. The results exhibit that the classification performance of SVM is significantly improved by the new feature vector. Furthermore, the VMD based on APA-PSO with adaptive parameter adjustment can effectively enhance the decomposition quality.
format Online
Article
Text
id pubmed-8838382
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88383822022-02-13 A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS Duan, Dawei Ma, Hongzhong Yan, Yan Yang, Qifan Sensors (Basel) Article A diagnosis scheme using the Hurst exponent for metal particle faults in GIL/GIS is proposed to improve the accuracy of classification and identification. First, the diagnosis source signal is the vibration signal generated by the collision of metal particles in the electric field. Then, the signal is processed via variational mode decomposition (VMD) based on particle swarm optimization with adaptive parameter adjustment (APA-PSO). In the end, fault types are classified and identified by an SVM model, whose feature vector is composed of the Hurst exponents of each intrinsic mode function (IMF-H). Extensive experimental data verify the effect of this new scheme. The results exhibit that the classification performance of SVM is significantly improved by the new feature vector. Furthermore, the VMD based on APA-PSO with adaptive parameter adjustment can effectively enhance the decomposition quality. MDPI 2022-01-23 /pmc/articles/PMC8838382/ /pubmed/35161608 http://dx.doi.org/10.3390/s22030862 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Duan, Dawei
Ma, Hongzhong
Yan, Yan
Yang, Qifan
A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
title A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
title_full A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
title_fullStr A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
title_full_unstemmed A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
title_short A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
title_sort fault diagnosis scheme using hurst exponent for metal particle faults in gil/gis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838382/
https://www.ncbi.nlm.nih.gov/pubmed/35161608
http://dx.doi.org/10.3390/s22030862
work_keys_str_mv AT duandawei afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis
AT mahongzhong afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis
AT yanyan afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis
AT yangqifan afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis
AT duandawei faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis
AT mahongzhong faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis
AT yanyan faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis
AT yangqifan faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis