Cargando…
A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS
A diagnosis scheme using the Hurst exponent for metal particle faults in GIL/GIS is proposed to improve the accuracy of classification and identification. First, the diagnosis source signal is the vibration signal generated by the collision of metal particles in the electric field. Then, the signal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838382/ https://www.ncbi.nlm.nih.gov/pubmed/35161608 http://dx.doi.org/10.3390/s22030862 |
_version_ | 1784650113581318144 |
---|---|
author | Duan, Dawei Ma, Hongzhong Yan, Yan Yang, Qifan |
author_facet | Duan, Dawei Ma, Hongzhong Yan, Yan Yang, Qifan |
author_sort | Duan, Dawei |
collection | PubMed |
description | A diagnosis scheme using the Hurst exponent for metal particle faults in GIL/GIS is proposed to improve the accuracy of classification and identification. First, the diagnosis source signal is the vibration signal generated by the collision of metal particles in the electric field. Then, the signal is processed via variational mode decomposition (VMD) based on particle swarm optimization with adaptive parameter adjustment (APA-PSO). In the end, fault types are classified and identified by an SVM model, whose feature vector is composed of the Hurst exponents of each intrinsic mode function (IMF-H). Extensive experimental data verify the effect of this new scheme. The results exhibit that the classification performance of SVM is significantly improved by the new feature vector. Furthermore, the VMD based on APA-PSO with adaptive parameter adjustment can effectively enhance the decomposition quality. |
format | Online Article Text |
id | pubmed-8838382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88383822022-02-13 A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS Duan, Dawei Ma, Hongzhong Yan, Yan Yang, Qifan Sensors (Basel) Article A diagnosis scheme using the Hurst exponent for metal particle faults in GIL/GIS is proposed to improve the accuracy of classification and identification. First, the diagnosis source signal is the vibration signal generated by the collision of metal particles in the electric field. Then, the signal is processed via variational mode decomposition (VMD) based on particle swarm optimization with adaptive parameter adjustment (APA-PSO). In the end, fault types are classified and identified by an SVM model, whose feature vector is composed of the Hurst exponents of each intrinsic mode function (IMF-H). Extensive experimental data verify the effect of this new scheme. The results exhibit that the classification performance of SVM is significantly improved by the new feature vector. Furthermore, the VMD based on APA-PSO with adaptive parameter adjustment can effectively enhance the decomposition quality. MDPI 2022-01-23 /pmc/articles/PMC8838382/ /pubmed/35161608 http://dx.doi.org/10.3390/s22030862 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Duan, Dawei Ma, Hongzhong Yan, Yan Yang, Qifan A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS |
title | A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS |
title_full | A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS |
title_fullStr | A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS |
title_full_unstemmed | A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS |
title_short | A Fault Diagnosis Scheme Using Hurst Exponent for Metal Particle Faults in GIL/GIS |
title_sort | fault diagnosis scheme using hurst exponent for metal particle faults in gil/gis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838382/ https://www.ncbi.nlm.nih.gov/pubmed/35161608 http://dx.doi.org/10.3390/s22030862 |
work_keys_str_mv | AT duandawei afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis AT mahongzhong afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis AT yanyan afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis AT yangqifan afaultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis AT duandawei faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis AT mahongzhong faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis AT yanyan faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis AT yangqifan faultdiagnosisschemeusinghurstexponentformetalparticlefaultsingilgis |