Cargando…

Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks

The article presents a novel application of the most up-to-date computational approach, i.e., artificial intelligence, to the problem of the compression of closed-cell aluminium. The objective of the research was to investigate whether the phenomenon can be described by neural networks and to determ...

Descripción completa

Detalles Bibliográficos
Autores principales: Stręk, Anna M., Dudzik, Marek, Machniewicz, Tomasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838418/
https://www.ncbi.nlm.nih.gov/pubmed/35161204
http://dx.doi.org/10.3390/ma15031262
_version_ 1784650122537205760
author Stręk, Anna M.
Dudzik, Marek
Machniewicz, Tomasz
author_facet Stręk, Anna M.
Dudzik, Marek
Machniewicz, Tomasz
author_sort Stręk, Anna M.
collection PubMed
description The article presents a novel application of the most up-to-date computational approach, i.e., artificial intelligence, to the problem of the compression of closed-cell aluminium. The objective of the research was to investigate whether the phenomenon can be described by neural networks and to determine the details of the network architecture so that the assumed criteria of accuracy, ability to prognose and repeatability would be complied. The methodology consisted of the following stages: experimental compression of foam specimens, choice of machine learning parameters, implementation of an algorithm for building different structures of artificial neural networks (ANNs), a two-step verification of the quality of built models and finally the choice of the most appropriate ones. The studied ANNs were two-layer feedforward networks with varying neuron numbers in the hidden layer. The following measures of evaluation were assumed: mean square error (MSE), sum of absolute errors (SAE) and mean absolute relative error (MARE). Obtained results show that networks trained with the assumed learning parameters which had 4 to 11 neurons in the hidden layer were appropriate for modelling and prognosing the compression of closed-cell aluminium in the assumed domains; however, they fulfilled accuracy and repeatability conditions differently. The network with six neurons in the hidden layer provided the best accuracy of prognosis at [Formula: see text] but little robustness. On the other hand, the structure with a complexity of 11 neurons gave a similar high-quality of prognosis at [Formula: see text] but with a much better robustness indication (80%). The results also allowed the determination of the minimum threshold of the accuracy of prognosis: [Formula: see text]. In conclusion, the research shows that the phenomenon of the compression of aluminium foam is able to be described by neural networks within the frames of made assumptions and allowed for the determination of detailed specifications of structure and learning parameters for building models with good-quality accuracy and robustness.
format Online
Article
Text
id pubmed-8838418
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88384182022-02-13 Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks Stręk, Anna M. Dudzik, Marek Machniewicz, Tomasz Materials (Basel) Article The article presents a novel application of the most up-to-date computational approach, i.e., artificial intelligence, to the problem of the compression of closed-cell aluminium. The objective of the research was to investigate whether the phenomenon can be described by neural networks and to determine the details of the network architecture so that the assumed criteria of accuracy, ability to prognose and repeatability would be complied. The methodology consisted of the following stages: experimental compression of foam specimens, choice of machine learning parameters, implementation of an algorithm for building different structures of artificial neural networks (ANNs), a two-step verification of the quality of built models and finally the choice of the most appropriate ones. The studied ANNs were two-layer feedforward networks with varying neuron numbers in the hidden layer. The following measures of evaluation were assumed: mean square error (MSE), sum of absolute errors (SAE) and mean absolute relative error (MARE). Obtained results show that networks trained with the assumed learning parameters which had 4 to 11 neurons in the hidden layer were appropriate for modelling and prognosing the compression of closed-cell aluminium in the assumed domains; however, they fulfilled accuracy and repeatability conditions differently. The network with six neurons in the hidden layer provided the best accuracy of prognosis at [Formula: see text] but little robustness. On the other hand, the structure with a complexity of 11 neurons gave a similar high-quality of prognosis at [Formula: see text] but with a much better robustness indication (80%). The results also allowed the determination of the minimum threshold of the accuracy of prognosis: [Formula: see text]. In conclusion, the research shows that the phenomenon of the compression of aluminium foam is able to be described by neural networks within the frames of made assumptions and allowed for the determination of detailed specifications of structure and learning parameters for building models with good-quality accuracy and robustness. MDPI 2022-02-08 /pmc/articles/PMC8838418/ /pubmed/35161204 http://dx.doi.org/10.3390/ma15031262 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Stręk, Anna M.
Dudzik, Marek
Machniewicz, Tomasz
Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks
title Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks
title_full Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks
title_fullStr Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks
title_full_unstemmed Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks
title_short Specifications for Modelling of the Phenomenon of Compression of Closed-Cell Aluminium Foams with Neural Networks
title_sort specifications for modelling of the phenomenon of compression of closed-cell aluminium foams with neural networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838418/
https://www.ncbi.nlm.nih.gov/pubmed/35161204
http://dx.doi.org/10.3390/ma15031262
work_keys_str_mv AT strekannam specificationsformodellingofthephenomenonofcompressionofclosedcellaluminiumfoamswithneuralnetworks
AT dudzikmarek specificationsformodellingofthephenomenonofcompressionofclosedcellaluminiumfoamswithneuralnetworks
AT machniewicztomasz specificationsformodellingofthephenomenonofcompressionofclosedcellaluminiumfoamswithneuralnetworks