Cargando…
Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations
Fluorine is a common substituent in medicinal chemistry and is found in up to 50% of the most profitable drugs. In this study, a statistical analysis of the nature, geometry, and frequency of hydrogen bonds (HBs) formed between the aromatic and aliphatic C–F groups of small molecules and biological...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838457/ https://www.ncbi.nlm.nih.gov/pubmed/35164270 http://dx.doi.org/10.3390/molecules27031005 |
_version_ | 1784650132368654336 |
---|---|
author | Pietruś, Wojciech Kafel, Rafał Bojarski, Andrzej J. Kurczab, Rafał |
author_facet | Pietruś, Wojciech Kafel, Rafał Bojarski, Andrzej J. Kurczab, Rafał |
author_sort | Pietruś, Wojciech |
collection | PubMed |
description | Fluorine is a common substituent in medicinal chemistry and is found in up to 50% of the most profitable drugs. In this study, a statistical analysis of the nature, geometry, and frequency of hydrogen bonds (HBs) formed between the aromatic and aliphatic C–F groups of small molecules and biological targets found in the Protein Data Bank (PDB) repository was presented. Interaction energies were calculated for those complexes using three different approaches. The obtained results indicated that the interaction energy of F-containing HBs is determined by the donor–acceptor distance and not by the angles. Moreover, no significant relationship between the energies of HBs with fluorine and the donor type was found, implying that fluorine is a weak HB acceptor for all types of HB donors. However, the statistical analysis of the PDB repository revealed that the most populated geometric parameters of HBs did not match the calculated energetic optima. In a nutshell, HBs containing fluorine are forced to form due to the stronger ligand–receptor neighboring interactions, which make fluorine the “donor’s last resort”. |
format | Online Article Text |
id | pubmed-8838457 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88384572022-02-13 Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations Pietruś, Wojciech Kafel, Rafał Bojarski, Andrzej J. Kurczab, Rafał Molecules Article Fluorine is a common substituent in medicinal chemistry and is found in up to 50% of the most profitable drugs. In this study, a statistical analysis of the nature, geometry, and frequency of hydrogen bonds (HBs) formed between the aromatic and aliphatic C–F groups of small molecules and biological targets found in the Protein Data Bank (PDB) repository was presented. Interaction energies were calculated for those complexes using three different approaches. The obtained results indicated that the interaction energy of F-containing HBs is determined by the donor–acceptor distance and not by the angles. Moreover, no significant relationship between the energies of HBs with fluorine and the donor type was found, implying that fluorine is a weak HB acceptor for all types of HB donors. However, the statistical analysis of the PDB repository revealed that the most populated geometric parameters of HBs did not match the calculated energetic optima. In a nutshell, HBs containing fluorine are forced to form due to the stronger ligand–receptor neighboring interactions, which make fluorine the “donor’s last resort”. MDPI 2022-02-02 /pmc/articles/PMC8838457/ /pubmed/35164270 http://dx.doi.org/10.3390/molecules27031005 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pietruś, Wojciech Kafel, Rafał Bojarski, Andrzej J. Kurczab, Rafał Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations |
title | Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations |
title_full | Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations |
title_fullStr | Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations |
title_full_unstemmed | Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations |
title_short | Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations |
title_sort | hydrogen bonds with fluorine in ligand–protein complexes-the pdb analysis and energy calculations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838457/ https://www.ncbi.nlm.nih.gov/pubmed/35164270 http://dx.doi.org/10.3390/molecules27031005 |
work_keys_str_mv | AT pietruswojciech hydrogenbondswithfluorineinligandproteincomplexesthepdbanalysisandenergycalculations AT kafelrafał hydrogenbondswithfluorineinligandproteincomplexesthepdbanalysisandenergycalculations AT bojarskiandrzejj hydrogenbondswithfluorineinligandproteincomplexesthepdbanalysisandenergycalculations AT kurczabrafał hydrogenbondswithfluorineinligandproteincomplexesthepdbanalysisandenergycalculations |