Cargando…

A Setup for Camera-Based Detection of Simulated Pathological States Using a Neonatal Phantom

Premature infants are among the most vulnerable patients in a hospital. Due to numerous complications associated with immaturity, a continuous monitoring of vital signs with a high sensitivity and accuracy is required. Today, wired sensors are attached to the patient’s skin. However, adhesive electr...

Descripción completa

Detalles Bibliográficos
Autores principales: Voss, Florian, Lyra, Simon, Blase, Daniel, Leonhardt, Steffen, Lüken, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838518/
https://www.ncbi.nlm.nih.gov/pubmed/35161702
http://dx.doi.org/10.3390/s22030957
Descripción
Sumario:Premature infants are among the most vulnerable patients in a hospital. Due to numerous complications associated with immaturity, a continuous monitoring of vital signs with a high sensitivity and accuracy is required. Today, wired sensors are attached to the patient’s skin. However, adhesive electrodes can be potentially harmful as they can damage the very thin immature skin. Although unobtrusive monitoring systems using cameras show the potential to replace cable-based techniques, advanced image processing algorithms are data-driven and, therefore, need much data to be trained. Due to the low availability of public neonatal image data, a patient phantom could help to implement algorithms for the robust extraction of vital signs from video recordings. In this work, a camera-based system is presented and validated using a neonatal phantom, which enabled a simulation of common neonatal pathologies such as hypo-/hyperthermia and brady-/tachycardia. The implemented algorithm was able to continuously measure and analyze the heart rate via photoplethysmography imaging with a mean absolute error of 0.91 bpm, as well as the distribution of a neonate’s skin temperature with a mean absolute error of less than 0.55 °C. For accurate measurements, a temperature gain offset correction on the registered image from two infrared thermography cameras was performed. A deep learning-based keypoint detector was applied for temperature mapping and guidance for the feature extraction. The presented setup successfully detected several levels of hypo- and hyperthermia, an increased central-peripheral temperature difference, tachycardia and bradycardia.