Cargando…
Deep Learning Approaches for Robust Time of Arrival Estimation in Acoustic Emission Monitoring
In this work, different types of artificial neural networks are investigated for the estimation of the time of arrival (ToA) in acoustic emission (AE) signals. In particular, convolutional neural network (CNN) models and a novel capsule neural network are proposed in place of standard statistical st...
Autores principales: | Zonzini, Federica, Bogomolov, Denis, Dhamija, Tanush, Testoni, Nicola, De Marchi, Luca, Marzani, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838549/ https://www.ncbi.nlm.nih.gov/pubmed/35161836 http://dx.doi.org/10.3390/s22031091 |
Ejemplares similares
-
Machine Learning Meets Compressed Sensing in Vibration-Based Monitoring
por: Zonzini, Federica, et al.
Publicado: (2022) -
A Robust Direction of Arrival Estimation Method for Uniform Circular Array
por: Xu, Zhengqin, et al.
Publicado: (2019) -
Underwater Localization via Wideband Direction-of-Arrival Estimation Using Acoustic Arrays of Arbitrary Shape †
por: Dubrovinskaya, Elizaveta, et al.
Publicado: (2020) -
Improved Direction-of-Arrival Estimation of an Acoustic Source Using Support Vector Regression and Signal Correlation
por: Alam, Faisal, et al.
Publicado: (2021) -
Micromechanical BEoL robustness evaluation methods enabling loading condition customization and acoustic emission damage monitoring()
por: Silomon, Jendrik, et al.
Publicado: (2023)