Cargando…
The Microstructure and Corrosion Resistance of Fe-B-W-Mn-Al Alloy in Liquid Zinc
The microstructure, interfacial characteristics, and corrosion resistance of Fe-W-Mn-Al-B alloys in molten zinc at 520 °C have been investigated using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and electron probe micro-analysis (EPMA). The experimental results indicate that the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838587/ https://www.ncbi.nlm.nih.gov/pubmed/35161035 http://dx.doi.org/10.3390/ma15031092 |
Sumario: | The microstructure, interfacial characteristics, and corrosion resistance of Fe-W-Mn-Al-B alloys in molten zinc at 520 °C have been investigated using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and electron probe micro-analysis (EPMA). The experimental results indicate that the Fe-B alloy with 11 wt.% W, 7 wt.% Mn, and 4 wt.% Al addition displays a lamellar eutectic microstructure and excellent corrosion resistance to molten zinc. The toughness of M(2)B-type borides in the hyper-eutectic Fe-4.2B-11W-7Mn-4Al alloy can be more than doubled, reaching 10.5 MPa·m(1/2), by adding Mn and Al. The corrosion layer of the Fe-3.5B-11W-7Mn-4Al alloy immersed in molten zinc at 520 °C comprises Fe(3)AlZn(x), δ-FeZn(10), ζ-FeZn(13), and η-Zn. The lamellar borides provide the mechanical protection for α-(Fe, Mn, Al), and the thermal stability of borides improves as the fracture toughness of the borides increases, which jointly contribute to the improvement of the corrosion resistance to the molten zinc. |
---|