Cargando…
ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning
Many patients affected by breast cancer die every year because of improper diagnosis and treatment. In recent years, applications of deep learning algorithms in the field of breast cancer detection have proved to be quite efficient. However, the application of such techniques has a lot of scope for...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838592/ https://www.ncbi.nlm.nih.gov/pubmed/35161576 http://dx.doi.org/10.3390/s22030832 |
_version_ | 1784650164962590720 |
---|---|
author | Chowdhury, Deepraj Das, Anik Dey, Ajoy Sarkar, Shreya Dwivedi, Ashutosh Dhar Rao Mukkamala, Raghava Murmu, Lakhindar |
author_facet | Chowdhury, Deepraj Das, Anik Dey, Ajoy Sarkar, Shreya Dwivedi, Ashutosh Dhar Rao Mukkamala, Raghava Murmu, Lakhindar |
author_sort | Chowdhury, Deepraj |
collection | PubMed |
description | Many patients affected by breast cancer die every year because of improper diagnosis and treatment. In recent years, applications of deep learning algorithms in the field of breast cancer detection have proved to be quite efficient. However, the application of such techniques has a lot of scope for improvement. Major works have been done in this field, however it can be made more efficient by the use of transfer learning to get impressive results. In the proposed approach, Convolutional Neural Network (CNN) is complemented with Transfer Learning for increasing the efficiency and accuracy of early detection of breast cancer for better diagnosis. The thought process involved using a pre-trained model, which already had some weights assigned rather than building the complete model from scratch. This paper mainly focuses on ResNet101 based Transfer Learning Model paired with the ImageNet dataset. The proposed framework provided us with an accuracy of 99.58%. Extensive experiments and tuning of hyperparameters have been performed to acquire the best possible results in terms of classification. The proposed frameworks aims to be an efficient tool for all doctors and society as a whole and help the user in early detection of breast cancer. |
format | Online Article Text |
id | pubmed-8838592 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88385922022-02-13 ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning Chowdhury, Deepraj Das, Anik Dey, Ajoy Sarkar, Shreya Dwivedi, Ashutosh Dhar Rao Mukkamala, Raghava Murmu, Lakhindar Sensors (Basel) Article Many patients affected by breast cancer die every year because of improper diagnosis and treatment. In recent years, applications of deep learning algorithms in the field of breast cancer detection have proved to be quite efficient. However, the application of such techniques has a lot of scope for improvement. Major works have been done in this field, however it can be made more efficient by the use of transfer learning to get impressive results. In the proposed approach, Convolutional Neural Network (CNN) is complemented with Transfer Learning for increasing the efficiency and accuracy of early detection of breast cancer for better diagnosis. The thought process involved using a pre-trained model, which already had some weights assigned rather than building the complete model from scratch. This paper mainly focuses on ResNet101 based Transfer Learning Model paired with the ImageNet dataset. The proposed framework provided us with an accuracy of 99.58%. Extensive experiments and tuning of hyperparameters have been performed to acquire the best possible results in terms of classification. The proposed frameworks aims to be an efficient tool for all doctors and society as a whole and help the user in early detection of breast cancer. MDPI 2022-01-22 /pmc/articles/PMC8838592/ /pubmed/35161576 http://dx.doi.org/10.3390/s22030832 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chowdhury, Deepraj Das, Anik Dey, Ajoy Sarkar, Shreya Dwivedi, Ashutosh Dhar Rao Mukkamala, Raghava Murmu, Lakhindar ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning |
title | ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning |
title_full | ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning |
title_fullStr | ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning |
title_full_unstemmed | ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning |
title_short | ABCanDroid: A Cloud Integrated Android App for Noninvasive Early Breast Cancer Detection Using Transfer Learning |
title_sort | abcandroid: a cloud integrated android app for noninvasive early breast cancer detection using transfer learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838592/ https://www.ncbi.nlm.nih.gov/pubmed/35161576 http://dx.doi.org/10.3390/s22030832 |
work_keys_str_mv | AT chowdhurydeepraj abcandroidacloudintegratedandroidappfornoninvasiveearlybreastcancerdetectionusingtransferlearning AT dasanik abcandroidacloudintegratedandroidappfornoninvasiveearlybreastcancerdetectionusingtransferlearning AT deyajoy abcandroidacloudintegratedandroidappfornoninvasiveearlybreastcancerdetectionusingtransferlearning AT sarkarshreya abcandroidacloudintegratedandroidappfornoninvasiveearlybreastcancerdetectionusingtransferlearning AT dwivediashutoshdhar abcandroidacloudintegratedandroidappfornoninvasiveearlybreastcancerdetectionusingtransferlearning AT raomukkamalaraghava abcandroidacloudintegratedandroidappfornoninvasiveearlybreastcancerdetectionusingtransferlearning AT murmulakhindar abcandroidacloudintegratedandroidappfornoninvasiveearlybreastcancerdetectionusingtransferlearning |