Cargando…
Prediction of Compound Synthesis Accessibility Based on Reaction Knowledge Graph
With the increasing application of deep-learning-based generative models for de novo molecule design, the quantitative estimation of molecular synthetic accessibility (SA) has become a crucial factor for prioritizing the structures generated from generative models. It is also useful for helping in t...
Autores principales: | Li, Baiqing, Chen, Hongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838603/ https://www.ncbi.nlm.nih.gov/pubmed/35164303 http://dx.doi.org/10.3390/molecules27031039 |
Ejemplares similares
-
Prediction of adverse drug reactions based on knowledge graph embedding
por: Zhang, Fei, et al.
Publicado: (2021) -
Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge
por: Li, Shu-Wen, et al.
Publicado: (2023) -
Accessing scientific data through knowledge graphs with Ontop
por: Calvanese, Diego, et al.
Publicado: (2021) -
A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data
por: Li, Baiqing, et al.
Publicado: (2023) -
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
por: McDermott, Matthew J., et al.
Publicado: (2021)