Cargando…
ADFIST: Adaptive Dynamic Fuzzy Inference System Tree Driven by Optimized Knowledge Base for Indoor Air Quality Assessment
Air quality levels do not just affect climate change; rather, it leaves a significant impact on public health and wellbeing. Indoor air pollution is the major contributor to increased mortality and morbidity rates. This paper is focused on the assessment of indoor air quality based on several import...
Autores principales: | Saini, Jagriti, Dutta, Maitreyee, Marques, Gonçalo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838659/ https://www.ncbi.nlm.nih.gov/pubmed/35161754 http://dx.doi.org/10.3390/s22031008 |
Ejemplares similares
-
Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review
por: Saini, Jagriti, et al.
Publicado: (2020) -
A Fuzzy Inference System for the Assessment of Indoor Air Quality in an Operating Room to Prevent Surgical Site Infection
por: Colella, Ylenia, et al.
Publicado: (2022) -
Calibration Model of a Low-Cost Air Quality Sensor Using an Adaptive Neuro-Fuzzy Inference System
por: Alhasa, Kemal Maulana, et al.
Publicado: (2018) -
Study of the Characteristics and Comprehensive Fuzzy Assessment of Indoor Air Chemical Contamination in Public Buildings
por: Liang, Xiguan, et al.
Publicado: (2021) -
Adaptive Tree Proposals for Bayesian Phylogenetic Inference
por: Meyer, X
Publicado: (2021)