Cargando…
Enhancing Handover for 5G mmWave Mobile Networks Using Jump Markov Linear System and Deep Reinforcement Learning
The Fifth Generation (5G) mobile networks use millimeter waves (mmWaves) to offer gigabit data rates. However, unlike microwaves, mmWave links are prone to user and topographic dynamics. They easily get blocked and end up forming irregular cell patterns for 5G. This in turn causes too early, too lat...
Autores principales: | Chiputa, Masoto, Zhang, Minglong, Ali, G. G. Md. Nawaz, Chong, Peter Han Joo, Sabit, Hakilo, Kumar, Arun, Li, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838663/ https://www.ncbi.nlm.nih.gov/pubmed/35161492 http://dx.doi.org/10.3390/s22030746 |
Ejemplares similares
-
Wireless localization for mmWave networks in urban environments
por: Ruble, Macey, et al.
Publicado: (2018) -
On the Performance of Random Cognitive mmWave Sensor Networks
por: Song, Yi, et al.
Publicado: (2019) -
Deep Reinforcement Learning-Based Coordinated Beamforming for mmWave Massive MIMO Vehicular Networks
por: Tarafder, Pulok, et al.
Publicado: (2023) -
An Adaptive TTT Handover (ATH) Mechanism for Dual Connectivity (5G mmWave—LTE Advanced) during Unpredictable Wireless Channel Behavior
por: Gannapathy, Vigneswara Rao, et al.
Publicado: (2023) -
mmWave massive MIMO: a paradigm for 5G
por: Mumtaz, Shahid, et al.
Publicado: (2016)