Cargando…

10-Methacryloyloxydecyl Dihydrogen Phosphate (10-MDP)-Containing Cleaner Improves Bond Strength to Contaminated Monolithic Zirconia: An In-Vitro Study

Contamination of zirconia restorations before cementation can impair the resin–zirconia bonding durability. The objective of this study was to evaluate the effect of human saliva or blood decontamination with 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP)-containing cleaner on the resin–zirco...

Descripción completa

Detalles Bibliográficos
Autores principales: Awad, Mohamed M., Alhalabi, Feras, Alzahrani, Khaled Mosfer, Almutiri, Majed, Alqanawi, Fawaz, Albdiri, Lafi, Alshehri, Abdullah, Alrahlah, Ali, Ahmed, Mohammed H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838745/
https://www.ncbi.nlm.nih.gov/pubmed/35160968
http://dx.doi.org/10.3390/ma15031023
Descripción
Sumario:Contamination of zirconia restorations before cementation can impair the resin–zirconia bonding durability. The objective of this study was to evaluate the effect of human saliva or blood decontamination with 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP)-containing cleaner on the resin–zirconia shear bond strength (SBS). Methods: A total of 220 zirconia specimens were prepared and air-abraded and randomly distributed into 11 groups (n = 20 per group). Except for the control group (no contamination), zirconia specimens were contaminated with either human saliva (five groups) or blood (five groups), and then subjected to one of five cleaning methods: water rinsing, 38% phosphoric acid etchant (Pulpdent Corp., Watertown, MA, USA), 70% isopropanol alcohol (Avalon Pharma, Riyadh, Saudi Arabia), Ivoclean (Ivoclar Vivadent, Schaan, Lichtenstein) and Katana Cleaner (Kuraray Noritake, Tokyo, Japan). The resin–zirconia SBS was tested at 24 h and after thermocycling (10 k cycles). Three-way ANOVA followed by Tukey’s multiple comparisons test were utilized to analyze the SBS data. Failure modes were evaluated using a scanning electron microscope. Results: Both blood and saliva significantly affected resin–zirconia SBS as contaminants. After thermocycling, there was no statistically significant difference between SBS obtained after decontamination with the Katana Cleaner (blood, 6.026 ± 2.805 MPa; saliva, 5.206 ± 2.212 MPa) or Ivoclean (blood, 7.08 ± 3.309 MPa; saliva, 6.297 ± 3.083 MPa), and the control group (no contamination, 7.479 ± 3.64 MPa). Adhesive and mixed failures were the most frequent among the tested groups. Conclusion: Both 10-MDP-containing cleaner (Katana Cleaner) and zirconium oxide-containing cleaner (Ivoclean) could eliminate the negative effect of saliva and blood contamination on resin–zirconia SBS.