Cargando…
FRDD-Net: Automated Carotid Plaque Ultrasound Images Segmentation Using Feature Remapping and Dense Decoding
Automated segmentation and evaluation of carotid plaques ultrasound images is of great significance for the diagnosis and early intervention of high-risk groups of cardiovascular and cerebrovascular diseases. However, it remains challenging to develop such solutions due to the relatively low quality...
Autores principales: | Li, Yanhan, Zou, Lian, Xiong, Li, Yu, Fen, Jiang, Hao, Fan, Cien, Cheng, Mofan, Li, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838852/ https://www.ncbi.nlm.nih.gov/pubmed/35161631 http://dx.doi.org/10.3390/s22030887 |
Ejemplares similares
-
HRU-Net: A Transfer Learning Method for Carotid Artery Plaque Segmentation in Ultrasound Images
por: Yuan, Yanchao, et al.
Publicado: (2022) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
DCNet: Densely Connected Deep Convolutional Encoder–Decoder Network for Nasopharyngeal Carcinoma Segmentation
por: Li, Yang, et al.
Publicado: (2021) -
Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation
por: Zhu, Hancan, et al.
Publicado: (2019) -
Automated Multi-View Multi-Modal Assessment of COVID-19 Patients Using Reciprocal Attention and Biomedical Transform
por: Li, Yanhan, et al.
Publicado: (2022)