Cargando…
LT-FS-ID: Log-Transformed Feature Learning and Feature-Scaling-Based Machine Learning Algorithms to Predict the k-Barriers for Intrusion Detection Using Wireless Sensor Network
The dramatic increase in the computational facilities integrated with the explainable machine learning algorithms allows us to do fast intrusion detection and prevention at border areas using Wireless Sensor Networks (WSNs). This study proposed a novel approach to accurately predict the number of ba...
Autores principales: | Singh, Abhilash, Amutha, J., Nagar, Jaiprakash, Sharma, Sandeep, Lee, Cheng-Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838871/ https://www.ncbi.nlm.nih.gov/pubmed/35161815 http://dx.doi.org/10.3390/s22031070 |
Ejemplares similares
-
AutoML-ID: automated machine learning model for intrusion detection using wireless sensor network
por: Singh, Abhilash, et al.
Publicado: (2022) -
ID-RDRL: a deep reinforcement learning-based feature selection intrusion detection model
por: Ren, Kezhou, et al.
Publicado: (2022) -
ECS-NL: An Enhanced Cuckoo Search Algorithm for Node Localisation in Wireless Sensor Networks
por: Kotiyal, Vaibhav, et al.
Publicado: (2021) -
Network intrusion detection using deep learning: a feature learning approach
por: Kim, Kwangjo, et al.
Publicado: (2018) -
Attentive transformer deep learning algorithm for intrusion detection on IoT systems using automatic Xplainable feature selection
por: Zegarra Rodríguez, Demóstenes, et al.
Publicado: (2023)