Cargando…
Monocular Depth Estimation with Self-Supervised Learning for Vineyard Unmanned Agricultural Vehicle
To find an economical solution to infer the depth of the surrounding environment of unmanned agricultural vehicles (UAV), a lightweight depth estimation model called MonoDA based on a convolutional neural network is proposed. A series of sequential frames from monocular videos are used to train the...
Autores principales: | Cui, Xue-Zhi, Feng, Quan, Wang, Shu-Zhi, Zhang, Jian-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838921/ https://www.ncbi.nlm.nih.gov/pubmed/35161463 http://dx.doi.org/10.3390/s22030721 |
Ejemplares similares
-
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
por: Fan, Chao, et al.
Publicado: (2021) -
Self-supervised monocular depth estimation for high field of view colonoscopy cameras
por: Mathew, Alwyn, et al.
Publicado: (2023) -
Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles
por: Huang, Kuo-Lung, et al.
Publicado: (2015) -
Delayed Monocular SLAM Approach Applied to Unmanned Aerial Vehicles
por: Munguia, Rodrigo, et al.
Publicado: (2016) -
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
por: Hirohata, Yasuhide, et al.
Publicado: (2023)