Cargando…
Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone
Objectives: This study evaluated the cellular response of primary osteoblasts exposed to two different presentations of a low-temperature non-sintered deproteinized bovine bone matrix (DBBM). Materials and methods: Six different baths of a commercially available DBBM block (Bonefill(®) Porous Block)...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839050/ https://www.ncbi.nlm.nih.gov/pubmed/35160947 http://dx.doi.org/10.3390/ma15030999 |
_version_ | 1784650275415392256 |
---|---|
author | de Azambuja Carvalho, Pedro Henrique Al-Maawi, Sarah Dohle, Eva Sader, Robert Alexander Pereira-Filho, Valfrido Antonio Ghanaati, Shahram |
author_facet | de Azambuja Carvalho, Pedro Henrique Al-Maawi, Sarah Dohle, Eva Sader, Robert Alexander Pereira-Filho, Valfrido Antonio Ghanaati, Shahram |
author_sort | de Azambuja Carvalho, Pedro Henrique |
collection | PubMed |
description | Objectives: This study evaluated the cellular response of primary osteoblasts exposed to two different presentations of a low-temperature non-sintered deproteinized bovine bone matrix (DBBM). Materials and methods: Six different baths of a commercially available DBBM block (Bonefill(®) Porous Block) and one of DBBM granule (Bonefill(®) Porous) were evaluated to identify the mineral structure and organic or cellular remnants. Samples of the same baths were processed in TRIZOL for RNA extraction and quantification. For the immunologic cell reaction assay, primary human osteoblasts (pOB) were exposed to DBMM block (pOB + B) or granules (pOB + G), or none (control) for 1, 3, or 7 days of cell cultivation. Expression of proinflammatory cytokines by pOB was evaluated by crosslinked ELISA assay. In addition, total DNA amount, as well as cell viability via LDH evaluation, was assessed. Results: Organic remnants were present in DBBM blocks; 45.55% (±7.12) of osteocytes lacunae presented cellular remnants in blocks compared to 17.31% (±1.31) in granules. In three of five batches of blocks, it was possible to isolate bovine RNA. The highest concentration of TGF-β1 was found in supernatants of pOB + G on day 7 (218.85 ± 234.62 pg/mL) (p < 0.05), whereas pOB + B presented the lowest amount of TGF-β1 secretion at the end of evaluation (30.22 ± 14.94 pg/mL, p < 0.05). For IL-6 and OPG, there was no statistical difference between groups, while pOB + G induced more IL-8 secretion than the control (3.03 ± 3.38 ng/mL, p < 0.05). Considering the kinetics of cytokine release during the study period, all groups presented a similar pattern of cytokines, estimated as an increasing concentration for IL-6, IL-8, and OPG during cultivation. Adherent cells were observed on both material surfaces on day 7, according to H&E and OPN staining. Conclusion: Neither tested material induced a pronounced inflammatory response upon osteoblast cultivation. However, further studies are needed to elucidate the potential influence of organic remnants in bone substitute materials on the regeneration process. |
format | Online Article Text |
id | pubmed-8839050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88390502022-02-13 Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone de Azambuja Carvalho, Pedro Henrique Al-Maawi, Sarah Dohle, Eva Sader, Robert Alexander Pereira-Filho, Valfrido Antonio Ghanaati, Shahram Materials (Basel) Article Objectives: This study evaluated the cellular response of primary osteoblasts exposed to two different presentations of a low-temperature non-sintered deproteinized bovine bone matrix (DBBM). Materials and methods: Six different baths of a commercially available DBBM block (Bonefill(®) Porous Block) and one of DBBM granule (Bonefill(®) Porous) were evaluated to identify the mineral structure and organic or cellular remnants. Samples of the same baths were processed in TRIZOL for RNA extraction and quantification. For the immunologic cell reaction assay, primary human osteoblasts (pOB) were exposed to DBMM block (pOB + B) or granules (pOB + G), or none (control) for 1, 3, or 7 days of cell cultivation. Expression of proinflammatory cytokines by pOB was evaluated by crosslinked ELISA assay. In addition, total DNA amount, as well as cell viability via LDH evaluation, was assessed. Results: Organic remnants were present in DBBM blocks; 45.55% (±7.12) of osteocytes lacunae presented cellular remnants in blocks compared to 17.31% (±1.31) in granules. In three of five batches of blocks, it was possible to isolate bovine RNA. The highest concentration of TGF-β1 was found in supernatants of pOB + G on day 7 (218.85 ± 234.62 pg/mL) (p < 0.05), whereas pOB + B presented the lowest amount of TGF-β1 secretion at the end of evaluation (30.22 ± 14.94 pg/mL, p < 0.05). For IL-6 and OPG, there was no statistical difference between groups, while pOB + G induced more IL-8 secretion than the control (3.03 ± 3.38 ng/mL, p < 0.05). Considering the kinetics of cytokine release during the study period, all groups presented a similar pattern of cytokines, estimated as an increasing concentration for IL-6, IL-8, and OPG during cultivation. Adherent cells were observed on both material surfaces on day 7, according to H&E and OPN staining. Conclusion: Neither tested material induced a pronounced inflammatory response upon osteoblast cultivation. However, further studies are needed to elucidate the potential influence of organic remnants in bone substitute materials on the regeneration process. MDPI 2022-01-27 /pmc/articles/PMC8839050/ /pubmed/35160947 http://dx.doi.org/10.3390/ma15030999 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article de Azambuja Carvalho, Pedro Henrique Al-Maawi, Sarah Dohle, Eva Sader, Robert Alexander Pereira-Filho, Valfrido Antonio Ghanaati, Shahram Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone |
title | Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone |
title_full | Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone |
title_fullStr | Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone |
title_full_unstemmed | Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone |
title_short | Cellular Response of Human Osteoblasts to Different Presentations of Deproteinized Bovine Bone |
title_sort | cellular response of human osteoblasts to different presentations of deproteinized bovine bone |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839050/ https://www.ncbi.nlm.nih.gov/pubmed/35160947 http://dx.doi.org/10.3390/ma15030999 |
work_keys_str_mv | AT deazambujacarvalhopedrohenrique cellularresponseofhumanosteoblaststodifferentpresentationsofdeproteinizedbovinebone AT almaawisarah cellularresponseofhumanosteoblaststodifferentpresentationsofdeproteinizedbovinebone AT dohleeva cellularresponseofhumanosteoblaststodifferentpresentationsofdeproteinizedbovinebone AT saderrobertalexander cellularresponseofhumanosteoblaststodifferentpresentationsofdeproteinizedbovinebone AT pereirafilhovalfridoantonio cellularresponseofhumanosteoblaststodifferentpresentationsofdeproteinizedbovinebone AT ghanaatishahram cellularresponseofhumanosteoblaststodifferentpresentationsofdeproteinizedbovinebone |