Cargando…

Fragmentation of Beaded Fibres in a Composite

The fibre–matrix interface plays an important role in the overall mechanical behaviour of a fibre-reinforced composite, but the classical approach to improving the interface through chemical sizing is bounded by the materials’ properties. By contrast, structural and/or geometrical modification of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodricks, Carol Winnifred, Greenfeld, Israel, Fiedler, Bodo, Wagner, Hanoch Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839112/
https://www.ncbi.nlm.nih.gov/pubmed/35160836
http://dx.doi.org/10.3390/ma15030890
Descripción
Sumario:The fibre–matrix interface plays an important role in the overall mechanical behaviour of a fibre-reinforced composite, but the classical approach to improving the interface through chemical sizing is bounded by the materials’ properties. By contrast, structural and/or geometrical modification of the interface may provide mechanical interlocking and have wider possibilities and benefits. Here we investigate the introduction of polymer beads along the interface of a fibre and validate their contribution by a single fibre fragmentation test. Using glass fibres and the same epoxy system for both matrix and beads, an increase of 17.5% is observed in the interfacial shear strength of the beaded fibres compared to fibres with no polymer beads. This increase should lead to a similar improvement in the strength and toughness of a beaded fibre composite when short fibres are used. The beads were also seen to stabilise the fragmentation process of a fibre by reducing the scatter in fragment density at a given strain. A case could also be made for a critical beads number—4 beads in our experimental system—to describe interfacial shear strength, analogous to a critical length used in fibre composites.