Cargando…
Fragmentation of Beaded Fibres in a Composite
The fibre–matrix interface plays an important role in the overall mechanical behaviour of a fibre-reinforced composite, but the classical approach to improving the interface through chemical sizing is bounded by the materials’ properties. By contrast, structural and/or geometrical modification of th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839112/ https://www.ncbi.nlm.nih.gov/pubmed/35160836 http://dx.doi.org/10.3390/ma15030890 |
Sumario: | The fibre–matrix interface plays an important role in the overall mechanical behaviour of a fibre-reinforced composite, but the classical approach to improving the interface through chemical sizing is bounded by the materials’ properties. By contrast, structural and/or geometrical modification of the interface may provide mechanical interlocking and have wider possibilities and benefits. Here we investigate the introduction of polymer beads along the interface of a fibre and validate their contribution by a single fibre fragmentation test. Using glass fibres and the same epoxy system for both matrix and beads, an increase of 17.5% is observed in the interfacial shear strength of the beaded fibres compared to fibres with no polymer beads. This increase should lead to a similar improvement in the strength and toughness of a beaded fibre composite when short fibres are used. The beads were also seen to stabilise the fragmentation process of a fibre by reducing the scatter in fragment density at a given strain. A case could also be made for a critical beads number—4 beads in our experimental system—to describe interfacial shear strength, analogous to a critical length used in fibre composites. |
---|