Cargando…

A Path Planning Method with Perception Optimization Based on Sky Scanning for UAVs

Unmanned aerial vehicles (UAVs) are frequently adopted in disaster management. The vision they provide is extremely valuable for rescuers. However, they face severe problems in their stability in actual disaster scenarios, as the images captured by the on-board sensors cannot consistently give enoug...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Songhe, Ota, Kaoru, Dong, Mianxiong, Zhao, Jianghai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839164/
https://www.ncbi.nlm.nih.gov/pubmed/35161639
http://dx.doi.org/10.3390/s22030891
Descripción
Sumario:Unmanned aerial vehicles (UAVs) are frequently adopted in disaster management. The vision they provide is extremely valuable for rescuers. However, they face severe problems in their stability in actual disaster scenarios, as the images captured by the on-board sensors cannot consistently give enough information for deep learning models to make accurate decisions. In many cases, UAVs have to capture multiple images from different views to output final recognition results. In this paper, we desire to formulate the fly path task for UAVs, considering the actual perception needs. A convolutional neural networks (CNNs) model is proposed to detect and localize the objects, such as the buildings, as well as an optimization method to find the optimal flying path to accurately recognize as many objects as possible with a minimum time cost. The simulation results demonstrate that the proposed method is effective and efficient, and can address the actual scene understanding and path planning problems for UAVs in the real world well.