Cargando…
Multi-Path U-Net Architecture for Cell and Colony-Forming Unit Image Segmentation
U-Net is the most cited and widely-used deep learning model for biomedical image segmentation. In this paper, we propose a new enhanced version of a ubiquitous U-Net architecture, which improves upon the original one in terms of generalization capabilities, while addressing several immanent shortcom...
Autores principales: | Jumutc, Vilen, Bļizņuks, Dmitrijs, Lihachev, Alexey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839202/ https://www.ncbi.nlm.nih.gov/pubmed/35161735 http://dx.doi.org/10.3390/s22030990 |
Ejemplares similares
-
Hybrid Approach to Colony-Forming Unit Counting Problem Using Multi-Loss U-Net Reformulation
por: Jumutc, Vilen, et al.
Publicado: (2023) -
Tools for classification of growing/non-growing bacterial colonies using laser speckle imaging
por: Balmages, Ilya, et al.
Publicado: (2023) -
Use of the speckle imaging sub-pixel correlation analysis in revealing a mechanism of microbial colony growth
por: Balmages, Ilya, et al.
Publicado: (2023) -
Multi-Class CNN for Classification of Multispectral and Autofluorescence Skin Lesion Clinical Images
por: Lihacova, Ilze, et al.
Publicado: (2022) -
Laser speckle imaging for visualization of hidden effects for early detection of antibacterial susceptibility in disc diffusion tests
por: Balmages, Ilya, et al.
Publicado: (2023)